跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張仕欣
研究生(外文):Chang, Shih-Hsin
論文名稱:鉛在矽(111)表面上的低溫電子成長及相變化與成長一維矽奈米線在鉛/矽(111)表面上之研究
論文名稱(外文):Investigation on the low temperature electronic growth and phase transitions of Pb on Si(111) surfaces, and the growth of 1-D Si nanowires on Pb/Si(111) surfaces
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Chen, L. J.
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:137
中文關鍵詞:可變溫掃描穿隧顯微鏡電子成長奈米線相變化量子尺寸效應不相稱掃描穿遂能譜非對稱性
外文關鍵詞:variable temperature scanning tunneling microscopyelectronic growthnanowiresphase transitionsquantum size effectincommensuratescanning tunneling spectroscopyasymmetrical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文是利用可變溫掃描穿隧顯微鏡(variable-temperature scanning tunneling microscopy)在矽(111)表面上,鉛原子的低溫電子成長及相變化與成長一維矽奈米線在鉛/矽(111)表面上之研究。論文的架構如下:第一部份討論二維鉛島在矽(111)-7×7表面上的低溫成長情形及其與成長溫度的關係。第二部分是有關於鉛島的電子結構以及其對於鉛島成長的影響。第三部份則是鉛原子在矽(111)表面上的低溫相變。第四部分則是有關於在鉛/矽(111)表面上的一維矽奈米線。
第一部份是低溫(約200 K)成長鉛薄膜在矽(111)-7×7表面上之研究。在這溫度之下,鉛會形成表面平坦的鉛島,且在低披覆量下,鉛島的厚度都侷限在4層到9層之間。而在這些鉛島之中,其中又以7層厚度的鉛島佔大多數。在低披覆量之下,這些不同厚度的鉛島成長情形顯示了二維成長特性;也就是鉛島在成長時只會增加它的面積,而不會增加其厚度。這種有別於傳統成長模式的成長特性是來自於量子尺寸效應(quantum size effect)。在高披覆量時,鉛島仍顯示其一層接一層(layer-by-layer)的成長特性。從Arrhenius圖中,鉛島密度與溫度有直線的關係,這顯示出鉛島的成長是符合熱活化(thermally activated)的機制。同時鉛在不相稱(incommensurate, IC) 鉛/矽(111)相表面上低溫成長鉛薄膜之時。表面平坦的鉛島同樣可形成,但其起始的厚度並不是4層而是2層。
第二部份是結合實空間(real-space)的掃描穿遂顯微鏡與局部探測(local-probe)的掃描穿遂能譜(scanning tunneling spectroscopy)來研究鉛島的電子結構。在不同厚度的鉛島上,被量子化的能態可以經由電流-電壓(I-V)能譜中得到。鉛島厚度具有震盪且非對稱性的鬆弛(relaxation)顯示出被侷限的電子其電荷分佈可以影響到鉛島層與層之間的厚度。以無限位能井為基礎的簡單模型可以成功地解釋實驗的結果。
第三部份是有關於鉛原子在矽(111)表面上的低溫相變結果。室溫的1×1相會在約250 K時相變成 ´ 相,且其相變溫度可以擴展至約40 K左右。提出原子模型:鉛原子會從它們的T1位置往H3位置偏移一些以形成三聚合體(trimer),且在兩個鄰近的列中有另外兩顆鉛原子,可以剛好吻合掃描穿遂顯微鏡中的觀察。條紋狀的不相稱相(striped IC, SIC)也被發現在約64 K時相變成 ´ 相。這顯示出1×1與不相稱相之間有極大的關聯性。由鉛原子被吸附在缺陷、臺階邊緣及島的邊緣所形成的表面應力場對這些相變化有關鍵性的影響。
有關於在鉛/矽(111)表面上形成一維矽奈米線的結果則是放在第四部份。在1×1與不相稱相上,矽奈米線都是成對出現且均平行於三個< >其中一個方向。原子模型中顯示出矽奈米線是由單一矽原子所組成,且其中一邊奈米線坐落於T1位置上,而另一邊則是坐落於相對應的H3位置上。另一方面,在1×1相上成長矽奈米線之後,不相稱相會開始出現。這顯示出1×1與不相稱相之間有極大的關聯性。

The low temperature electronic growth and phase transitions of Pb on Si(111) surfaces, and the growth of 1-D Si nanowires on Pb/Si(111) surfaces have been investigated by variable temperature scanning tunneling microscopy (VT-STM). This thesis is organized as follows: First, the low temperature growth of 2-D Pb islands on Si(111)-7×7 surfaces and their evolution with temperature. The second part is about the electronic structure of Pb islands and its effects for the island growth. The third part is the phase transitions of Pb atoms on the Si(111) surfaces at low temperature. The fourth part is on the 1-D Si nanowires on Pb/Si(111) surfaces.
In the first topic, the growth of Pb films on the Si(111)-7´7 surfaces has been investigated at low temperatures (~ 200 K). Flat-top Pb islands are formed and at low coverage the thicknesses of islands are confined in the range of 4~9 atomic layers. Among these islands, those of 7-layer height are the most abundant. In low coverage limit, these multi-layer islands prefer to grow in size instead of in thickness, showing a 2D growth property. This growth behavior, different from the conventional growth modes, arises from the quantum size effect (QSE). At higher coverage, the growth also reveals layer-by-layer behavior. The Arrhenius plot of the island density versus temperature shows a linear relationship, indicating the formation of islands is thermally activated. The growth of Pb films on incommensurate (IC) Pb/Si(111) surface at low temperatures is also studied. Flat Pb islands can be grown as well, but the threshold thickness is reduced to two atomic layers instead of four.
In the second topic, the real-space STM and local-probe scanning tunneling spectroscopy (STS) are involved in the studying of the electronic structure of Pb islands. Quantized states are detected in the current-voltage (I-V) spectra on individual Pb islands of various thicknesses. The asymmetrical and oscillatory relaxation in the island thickness reveals that the charge distribution of confined electrons can influence the interlayer spacing. A simple model based on the infinite potential well can explain satisfactorily all experimental results.
The third topic presents the results about the phase transition of Pb atoms on Si(111) surfaces at low temperature. The room temperature 1×1 phase undergoes a phase transition to ´ phase at ~ 250 K. The transition is found to extend over a range of ~ 40 K. The atomic model, in which Pb atoms displace laterally from their T1 sites to from trimers centered on H3 sites, and the other two Pb atoms between two neighboring rows shows a good agreement with STM observations. It is also discovered that the SIC phase transforms to ´ at ~ 64 K. It indicates a high correlation between IC and 1´1 phases. The surface strain field induced by Pb atoms absorbed at defects, at step edges, and island edges plays an important role for these transitions.
The 1-D Si nanowires on Pb/Si(111) surface always appeared in pair are parallel with one of three < > directions on both 1×1 and IC phases. The atomic model shows Si nanowires were composed of Si atoms, Si atoms on one side of nanowires were located on T1 sites, and located on H3 sites on the other side accordingly. On the other hand, the IC phase would tend to appear after the formation of Si nanowires on 1×1 phase. It seems that there is a high correlation between 1×1 and IC phase.

Acknowledgements ………………………………………………… V
Abstract …………………………………………………………….. VII
Chapter 1. Introduction …………………………………………. 1
Chapter 2. Apparatus and experimental procedures
2.1 Introduction …………………………………………………… 5
2.2 UHV system …………………………………………………... 6
2.2.1 STM system ……………………………………………. 6
2.2.2 LEED …………………………………………………… 8
2.2.3 Evaporator system ……………………………………… 8
2.3 Tip and sample preparation …………………………………… 9
2.3.1 Tip preparation …………………………………………. 9
2.3.2 Sample preparation ……………………………………... 10
2.3.2.1 Clean Si(111)-7×7 ………………………………... 10
2.3.2.1 IC, 1×1 and ´ Pb/Si(111) phases ………… 11
Chapter 3. Nucleation and growth of 2D Pb islands on Si(111) surfaces at low temperature
3.1 Introduction …………………………………………………… 15
3.2 Three traditional growth modes ………………………………. 17
3.3 Growth characteristics of 2D Pb islands on Si(111)-7×7 surface ……………………………………………………………… 18
3.4 Higher growth coverage ………………………………………. 21
3.5 Temperature effect ……………………………………………. 22
3.6 Interface effect ………………………………………………... 24
Chapter 4. Electronic structure of 2-D Pb islands on Si(111)-7×7 surface
4.1 Introduction …………………………………………………… 27
4.2 I-V spectra of 2-D Pb islands …………………………………. 29
4.3 Asymmetrical relaxation ……………………………………… 34
Chapter 5. Phase transitions of Pb atoms on Si(111) surfaces
5.1 Introduction …………………………………………………… 39
5.2 The structure of 1×1 phase and its phase transition …………... 43
5.3 The structure of IC phase and its phase transition ……………. 47
5.4 Correlation among 1×1, ´ , and IC phases …………….. 48
Chapter 6. 1-D Si nanowires on Pb/Si(111) surfaces
6.1 Introduction …………………………………………………… 57
6.2 The growth of 1-D Si nanowires on 1×1 and IC phases at room temperature ………………………………………………………….. 59
6.2.1 On 1×1 phase …………………………………………… 59
6.2.2 On IC phase …………………………………………….. 61
6.3 The atomic structure of 1-D Si nanowires ……………………. 62
6.4 Correlation between Si nanowires and substrate (1×1 and IC phases) ………………………………………………………………. 63
Chapter 7. Conclusions
7.1 Nucleation and growth of 2-D Pb islands on Si(111) surfaces at low temperature …………………………………………………... 69
7.2 Electronic structure of 2-D Pb islands on Si(111)-7×7 surface .. 70
7.3 Phase transitions of Pb atoms on Si(111) surfaces ……………. 70
7.4 1-D Si nanowires on Pb/Si(111) surfaces ……………………... 71
References ………………………………………………………….. 73
Tables …………………………………………….…………………. 93
Figure captions …………………………………………………….. 95
Figures ……………………………………………………………… 105

References
Chapter 1
1.1 P. Chaudhari and M. S. Dresselhaus, “Materials physics” Rev. Mod. Phys. 71, S331 (1999).
1.2 G. Binnig and H. Rohrer, “In touch with atoms” Rev. Mod. Phys. 71, S324 (1999).
1.3 P. Kim and C. M. Lieber, “Nanotube nanotweezers” Science 286, 2148 (1999).
1.4 Z. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions” Nature, 402, 273 (1999).
1.5 H. C. Manoharan, C. P. Lutz, and D. M. Eigler, “Quantum mirages formed by coherent projection of electronic structure” Nature, 403, 512 (2000).
1.6 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes” Science, 287, 1801 (2000).
1.7 P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown” Science, 292, 706 (2000).
1.8 H. W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature” Science, 293, 76 (2001).
1.9 M. Schulz, “The end of the road for silicon ?” Nature, 399, 729 (1999).
1.10 R. F. Service, “Nanocomputing: World's smallest transistor” Science, 293, 786 (2001).
1.11 B. M. Trafas, Y. N. Yang, R. L. Siefert, and J. H. Weaver, “Scanning tunneling microscopy of Ag growth on GaAs(110) at 300 K: From clusters to crystallites” Phys. Rev. B 43, 14107 (1991).
1.12 N. Motta, A. Sgarlata, R. Calarco, Q. Nguyen, J. C. Cal, F. Patella, A. Balzarotti, and M. D. Crescenzi, “Growth of Ge—Si(111) epitaxial layers: intermixing, strain relaxation and island formation” Surf. Sci. 406, 254 (1998).
1.13 C. Schelling, M. Mühlberger, G. Spingholz, and F. Schäffler, “Si1—xGex growth instabilities on vicinal Si(001) substrates: Kinetic vs. strain-induced effects” Phys. Rev. B 64, 041301(R) (2001).
1.14 V. L. Thanh, “New insight into the kinetics of Stranski—Krastanow growth of Ge on Si(001)” Surf. Sci. 492, 255 (2001).
1.15 G. Welder, J. Walz, T. Hesjedal, E. Chilla, and R. Koch, “Stress and relief of misfit strain of Ge/Si(001)” Phys. Rev. Lett. 80, 2382 (1998).
1.16 L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Chang, “Novel growth of Ag islands on Si(111): plateaus with a singular height” Phys. Rev. Lett. 82, 129 (1998).
1.17 A. R. Smith, K. J. Chao, Q. Niu, and C. K. Shih, “Formation of atomically flat silver films on GaAs with a silver mean quasi-periodicity” Science 273, 226 (1996).
1.18 K. Budde, E. Abram, V. Yeh, and M. C. Tringides, “Uniform, self-organized, seven-step height Pb/Si(111)-(7×7) islands at low temperatures” Phys. Rev. B 61, 10602, (2000).
1.19 Z. Zhang, Q. Niu, and C. K. Shih, “"Electronic growth" of metallic overlayers on semiconductor substrates” Phys. Rev. Lett. 80, 5381 (1998).
1.20 H. H. Weitering, D. R. Heslinga, and T. Hibma, “Structure and growth of epitaxial Pb on Si(111)” Phys. Rev. B 45, 5991 (1992).
1.21 D. R. Heslinga, H. H. Weitering, D. P. van der Werf, T. M. Klapwijk, and T. Hibma, “Atomic-structure-dependent Schottky barrier at epitaxial Pb/Si(111) interfaces” Phys. Rev. Lett. 64, 1589 (1990).
1.22 V. Yeh, L. B. Bautista, C. Z. Wang, K. M. Ho, and M. C. Tringides, Phys. Rev. Lett. “Role of the metal/semiconductor interface in quantum size effects: Pb/Si(111)” 85, 5158 (2000).
1.23 J. M. Carpinelli, H. H. Weitering, E. W. Plummer, and R. Stumpf, “Direct observation of a surface-charge density wave” Nature 381, 398 (1996).
1.24 J. M. Carpinelli, H. H. Weitering, M. Bartkowiak, R. Stumpf , and E. W. Plummer, “Surface charge ordering transition: a phase of Sn/Ge(111)” Phys. Rev. Lett. 79, 2859 (1997).
1.25 A. Mascaraque, J. Avila, J. Alvarez, M. C. Asensio, S. Ferrer, and E. G. Michel, “Nature of the low-temperature 3×3 surface phase of Pb/Ge(111)” Phys. Rev. Lett. 82, 2524 (1999).
1.26 J. Avila, A. Mascaraque, E. G, Michel, M. C. Asensio, G. L. Lay, J. Ortega, R. Pérez, and F. Flores, “Dynamical Fluctuations as the Origin of a Surface Phase Transition in Sn/Ge(111)” Phys. Rev. Lett. 82, 442 (1999).
1.27 R. I. G. Uhrberg and T. Balasubramanian, “Electronic structure of the × -a and 3×3 periodicities of Sn/Ge(111)” Phys. Rev. Lett. 81, 2108 (1998).
1.28 I. S. Hwang, R. E. Martinez, C. Liu, and J. A. Golovchenko, “High coverage phases of Pb on the Si(111) surface: Structures and phase transitions” Surf. Sci. 323, 241 (1995).
1.29 X. Tong, K. Horikoshi, and S. Hasegawa, “Structure and electrical conductance of Pb-covered Si(111) surfaces” Phys. Rev. B 60, 5653 (1999).
1.30 J. Slezák, P. Mutombo, and V. Cháb, “STM study of a Pb/Si(111) interface at room and low temperatures” Phys. Rev. B 60, 13328 (1999).
1.31 C. Kumpf, O. Bunk, J. H. Zeysing, M. M. Nielsen, M. Nielsen, R. L. Johnson, and R. Feidenhans’l, “Structural study of the commensurate—incommensurate low-temperature phase transition of Pb on Si(111)” Surf. Sci. 448, L213 (2000).
1.32 A. Petkova, J. Wollschläger, H. L. Günter, and M. Henzler, “Order and disorder in ultrathin Pb films grown on Si(111) 7×7 substrates at low temperatures” Surf. Sci. 482-485, 922 (2001).
1.33 H. Ohnishi, Y. Kondo, and K. Takayanagi, “Quantized conductance through individual rows of suspended gold atoms” Nature 395, 780 (1998).
1.34 V. Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rego, and D. Ugarte, “Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties” Phys. Rev. B 65, 153502 (2002).
Chapter 2
2.1 E. Ruska, “The development of the electron microscopy and of electron microscopy” Nobel lecture, December 8, 1986.
2.2 E. W. Müller, J. A. Panitz, and S. B. Mclane, “The atom-probe field ion microscope” Rev. Sci. Instrum. 39, 83 (1968).
2.3 G. Binnig, and H. Rohhrer, “Scanning tunneling microscopy-from birth to adolescence” Nober lecture, December 8, 1986.
2.4 D. M. Eigler, and E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope” Nature 344, 524 (1990).
2.5 H. C. Manoharan, C. P. Lutz, and D. M. Eigler, “Quantum mirages formed by coherent projection of electronic structure” Nature 403, 512 (2000).
2.6 M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal-surface” Science 262, 218 (1993).
2.7 H. J. Lee, and W. Ho, “Single-bond formation and characterization with a scanning tunneling microscope” Science 286, 1719 (1999).
2.8 L. Seehofer, G. Falkenberg, D. Daboul, and R. L. Johnson, “Structure study of the close-packed two-dimensional phases of Pb on Ge(111) ans Si(111)” Phys. Rev. B. 51, 13503 (1995).
2.9 I. S. Hwang, R. E. Martinez, C. Liu, and J. A. Golovchenko, “High coverage phases of Pb on the Si(111) Surface-structures and phase-transitions” Surf. Sci. 323, 241 (1995).
2.10 E. Ganz, F. Xiong, I. S. Hwang, and J. Golovchenko, “Submonolayer phases of Pb on Si(111)” Phys. Rev. B, 43, 7316 (1991).
Chapter 3
3.1 J. Walz, A. Greuer, G. Wedler, T. Hesjedal, E. Chilla, and R. Koch, “Stress and relief of misfit strain of Ge/Si(111)” App. Phys. Lett. 73, 2579 (1998).
3.2 A. Grossmann, W. Erley, J. B. Hannon, and H. Ibach, “Giant surface stress in heteroepitaxial films: invalidation of a classical rule in epitaxy” Phys. Rev. Lett. 77, 127 (1996).
3.3 J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: Spontaneous formation of quantum wires” Phys. Rev. Lett. 70, 2782 (1993).
3.4 L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Chang, “Novel growth of Ag islands on Si(111): plateaus with a singular height” Phys. Rev. Lett. 82, 129 (1998).
3.5 A. R. Smith, K. J. Chao, Q. Niu, and C. K. Shih, “Formation of atomically flat silver films on GaAs with a "silver mean" quasi periodicity” Science 273, 226 (1996).
3.6 K. Budde, E. Abram, V. Yeh, and M. C. Tringides, “Uniform, self-organized, seven-step height Pb/Si(111)-(7×7) islands at low temperatures” Phys. Rev. B 61, 10602, (2000).
3.7 Z. Zhang, Q. Niu, and C. K. Shih, “"Electronic growth" of metallic overlayers on semiconductor substrates” Phys. Rev. Lett. 80, 5381 (1998).
3.8 G. L. Lay, J. Peretti, M. Hanbücken, and W. S. Yang, “Surface spectroscopy studies of Pb monolayers on Si(111)” Surf. Sci. 204, 57 (1988).
3.9 H. H. Weitering, D. R. Heslinga, and T. Hibma, “Structure and growth of epitaxial Pb on Si(111)” Phys. Rev. B 45, 5991 (1992).
3.10 I. S. Hwang, R. E. Martinez, C. Liu, and J. A. Golovchenko, “High coverage phases of Pb on the Si(111) surface: Structures and phase transitions” Surf. Sci. 323, 241 (1995).
3.11 J. M. Gómez-Rodrínguez, J. Y. Veuillen, and R. C. Cinti, “Pb/Si(111) investigation at the ultralow-coverage range” J. Vac. Sci. Technol. B 14, 1005 (1996).
3.12 L. Seehofer, G. Falkenberg, D. Daboul, and R. L. Johnson, “Structural study of the close-packed two-dimensional phases of Pb on Ge(111) and Si(111)” Phys. Rev. B 51, 13503 (1995).
3.13 P. Sonnet, L. Stauffer, and C. Minot, “Adsorption and diffusion mechanisms of Pb on Si(111)-(7×7) in the initial stages of Pb chemisorption” Surf. Sci. 407, 121 (1998).
3.14 K. Horikoshi, X. Tong, T. Nagao, and S. Hasegawa, “Structural phase transitions of Pb-adsorbed Si(111) surfaces at low temperatures” Phys. Rev. B 60, 13287 (1999).
3.15 D. R. Heslinga, H. H. Weitering, D. P. van der Werf, T. M. Klapwijk, and T. Hibma, “Atomic-structure-dependent Schottky barrier at epitaxial Pb/Si(111) interfaces” Phys. Rev. Lett. 64, 1589 (1990).
3.16 W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, “Correlation between quantized electronic states and oscillatory thickness relaxations of 2D Pb islands on Si(111)-7×7 surfaces” Phys. Rev. Lett. 86, 5116 (2001).
3.17 W. B. Su, S. H. Chang, C. S. Chang, L. J. Chen, and T. T. Tsong, “Quantum size effects in low-temperature growth of Pb islands on Si(111)7×7 surfaces” Jpn. J. Appl. Phys. 40, 4229 (2001).
3.18 J. A. Stroscio, D. T. Pierce, and R. A. Dragoset, “Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction” Phys. Rev. Lett. 70, 3615 (1993).
3.19 J. A. Venables, “Rate equation approaches to thin film nucleation kinetics” Philos. Mag. 27, 697 (1973).
3.20 A. Zangwill, “Physics at surfaces”, Cambridge university press, 1988.
3.21 J. A. Venables, “Introduction to surface and thin film processes”, Cambridge university press, 2000.
3.22 J. H. Neave, P. J. Dobson, B. A. Joyce, and N. Norton, “Dynamics of film growth of GaAs by MBE from RHEED observations” Appl. Phys. A 31, 1 (1983).
3.23 J. Cibert, Y. Gobil, L. S. Dang, S. Tatarenko, G. Feuillet, P. H. Jouneau, and K. Saminadayar, “Critical thickness in epitaxial CdTe/ZnTe” Appl. Phys. Lett. 56, 292 (1990).
3.24 I. S. Hwang, T. C. Chang, and T. T. Tsong, “Exchange-barrier effects on nucleation and growth of surfactant-mediated epitaxy” Phys. Rev. Lett. 80, 4229 (1998).
3.25 J. Bçben, I. S. Hwang, and T. T. Tsong, “Analysis of island morphology in a model for Pb-mediated growth of Ge on Si(111)” Phys. Rev. B 64, 235328 (2001).
3.26 M. Jalochowskii and E. Bauer, “Reflection high-energy electron diffraction intensity oscillations during the growth of Pb on Si(111)” J. Appl. Phys. 63, 4501 (1988).
3.27 J. A. Stroscio and D. T. Pierce, “Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy” Phys. Rev. B 49, 8522 (1994).
3.28 F. Tsui, J. Wellman, C. Uher, and R. Clarke, “Morphology transition and layer-by-layer growth of Rh(111)” Phys. Rev. Lett. 76, 3164 (1996)
3.29 T. Michely, M. Hohage, M. Bott, and G. Comsa, “Inversion of growth speed anisotropy in two dimensions” Phys. Rev. Lett. 70, 3943 (1993).
3.30 R. Q. Hwang, J. Schröder, C. Günther, and R. J. Behm, “Fractal growth of two-dimensional islands: Au on Ru(0001)” Phys. Rev. Lett. 67, 3279 (1991).
Chapter 4
4.1 F. K. Schulte, “A theory of thin metal films: Electron density, potentials and work function” Surf. Sci. 55, 427 (1976).
4.2 R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling” Phys. Rev. B 12, 4146 (1975).
4.3 C. Marliere, “Quantum size effect detected by work function measurements during indium deposition on polycrystalline, texturized gold substrate” Vacuum 41, 1192 (1990).
4.4 M. Jalochowski, H. Knoppe, G. Lilienkamp, and E. Bauer, “Photoemission from ultrathin metallic films: Quantum size effect, electron scattering, and film structure” Phys. Rev. B 46, 4693 (1992).
4.5 M. Jalochowski and E. Bauer, “Quantum size and surface effects in the electrical resistivity and high-energy electron reflectivity of ultrathin lead films” Phys. Rev. B 38, 5272 (1988).
4.6 T. Miller, A. Samsavar, G. E. Franklin, and T. C. Chiang, “Quantum-well states in a metallic system: Ag on Au(111)” Phys. Rev. Lett. 61, 1404 (1988).
4.7 D. A. Evans, M. Alonso, R. Cimino, and K. Horn, “Observation of quantum size effects in photoemission from Ag islands on GaAs(110)” Phys. Rev. Lett. 70, 3483 (1993).
4.8 P. J. Feibelman, “Static quantum-size effects in thin crystalline, simple-metal films” Phys. Rev. B 27, 1991 (1983).
4.9 P. J. Feibelman and D. R. Hamann, “Quantum-size effects in work functions of free-standing and adsorbed thin metal films” Phys. Rev. B 29, 6463 (1984).
4.10 I. P. Batra, S. Ciraci, G. P. Srivastava, J. S. Nelson, and C. Y. Fong, “Dimensionality and size effects in simple metals” Phys. Rev. B 34, 8246 (1986).
4.11 S. Ciraci and I. P. Batra, “Theory of the quantum size effect in simple metals” Phys. Rev. B 33, 4294 (1986).
4.12 A. Crottini, D. Cvetko, L. Floreano, R. Gotter, A. Morgante, and F. Tommasini, “Step height oscillations during layer-by-layer growth of Pb on Ge(001)” Phy. Rev. Lett. 79, 1527 (1997).
4.13 H. Zeng and G. Vidali, “Measurement of growth kinetics in a heteroepitaxial system: Pb on Cu(100)” Phy. Rev. Lett. 74, 582 (1995).
4.14 L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Chang, “Novel growth of Ag islands on Si(111): plateaus with a singular height” Phys. Rev. Lett. 82, 129 (1998).
4.15 A. R. Smith, K. J. Chao, Q. Niu, and C. K. Shih, “Formation of atomically flat silver films on GaAs with a "silver mean" quasi periodicity” Science 273, 226 (1996).
4.16 K. Budde, E. Abram, V. Yeh, and M. C. Tringides, “Uniform, self-organized, seven-step height Pb/Si(111)-(7×7) islands at low temperatures” Phys. Rev. B 61, 10602, (2000).
4.17 Z. Zhang, Q. Niu, and C. K. Shih, “"Electronic growth" of metallic overlayers on semiconductor substrates” Phys. Rev. Lett. 80, 5381 (1998).
4.18 J. H. Cho, Q. Niu, and Z. Y. Zhang, “Oscillatory nonmetal-metal transitions of ultrathin Sb overlayers on a GaAs(110) substrate” Phys. Rev. Lett. 80, 3582 (1998).
4.19 G. L. Lay, J. Peretti, M. Hanbücken, and W. S. Yang, “Surface spectroscopy studies of Pb monolayers on Si(111)” Surf. Sci. 204, 57 (1988).
4.20 I. B. Altfeder, K. A. Matveev, and D. M. Chen, “Electron fringes on a quantum wedge” Phys. Rev. Lett. 78, 2815 (1997).
4.21 H. H. Weitering, D. R. Heslinga and T. Hibma, “Structure and growth of epitaxial Pb on Si(111)” Phys. Rev. B 45, 5991 (1992).
4.22 J. R. Anderson and A. V. Gold, “Fermi surface, pseudopotential coefficients, and spin-orbit coupling in lead” Phys. Rev. 139, A1459 (1965).
4.23 A. A. Neto and L. G. Ferreira, “Relativistic Green's-function method for solids and molecules” Phys. Rev. B 14, 4390 (1976).
4.24 K. Horn, B. Reihl, A. Zartner, D. E. Eastman, K. Hermann, and J. Noffke, “Electronic energy bands of lead: Angle-resolved photoemission and band-structure calculations” Phys. Rev. B 30, 1711 (1984).
Chapter 5
5.1 G. L. Lay, J. Peretti, M. Hanbücken, and W. S. Yang, “Surface spectroscopy studies of Pb monolayers on Si(111)” Surf. Sci. 204, 57 (1988).
5.2 S. H. Chang, W. B. Su, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, “Electronic growth of Pb islands on Si(111) at low temperature” Phys. Rev. B 65, 245401 (2002).
5.3 T. C. Chang, I. S. Hwang, and T. T. Tsong, “Direct observation of reaction-limited aggregation on semiconductor surfaces” Phys. Rev. Lett. 83, 1191 (1999).
5.4 M. Saitoh, K. Oura, K. Asano, F. Shoji, and T. Hanawa, “Low-energy ion-scattering study of adsorption and desorption processes of Pb on Si(111) surfaces” Surf. Sci. 154, 394 (1985).
5.5 G. L. Lay, K. Hricovini, and J. E. Bonnet, “Synchrotron radiation investigation and surface spectroscopy studies of prototypical systems - lead-semiconductor interfaces” Appl. Surf. Sci. 41/42, 25 (1989).
5.6 G. Quentel, M. Gauch, and A. Degiovanni, “Insitu ellipsometry studies of the growth of Pb on Si(111) surfaces” Surf. Sci. 193, 212 (1988).
5.7 E. Ganz, F. Xiong, I. S. Hwang, and J. Golovchenko, “Submonolayer phases of Pb on Si(111)” Phys. Rev. B 43, 7316 (1991).
5.8 I. S. Hwang, R. E. Martinez, C. Liu, and J. A. Golovchenko, “Soft incommensurate reconstruction on Pb/Si(111): Structure, stress modeulation, and phase transition” Phys. Rev. B 51, 10193 (1995).
5.9 I. S. Hwang, R. E. Martinez, C. Liu, and J. A. Golovchenko, “High coverage phases of Pb on the Si(111) Surface-structures and phase-transitions” Surf. Sci. 323, 241 (1995).
5.10 J. Slezák, P. Mutombo, and V. Cháb, “STM study of a Pb/Si(111) interface at room and low temperature” Phys. Rev. B 60, 13 328 (1999).
5.11 L. Seehofer, G. Falkenberg, D. Daboul, and R. L. Johnson, “Structure study of the close-packed two-dimensional phases of Pb on Ge(111) ans Si(111)” Phys. Rev. B 51, 13503 (1995).
5.12 H. H. Weitering, D. R. Heslinga, and T. Hibma, “Structure and growth of epitaxial Pb on Si(111)” Phys. Rev. B 45, 5991 (1992).
5.13 C. Kumpf, O. Bunk, J. H. Zeysing, M. M. Nielsen, M. Nielsen, R. L. Johnson, and R. Feidenhans’l, “Structural study of the commensurate-incommensurate low-temperature phase transition of Pb on Si(111)” Surf. Sci. 448, L213 (2000).
5.14 K. Horikoshi, X. Tong, T. Nagao, and S. Hasegawa, “Structural phase transitions of Pb-adsorbed Si(111) surface at low temperatures” Phys. Rev. B 60, 13287 (1999).
5.15 J. M. Carpinelli, H. H. Weitering, E. W. Plummer, and R. Stumpf, “Direct observation of a surface charge density wave” Nature 381, 398 (1996).
5.16 J. M. Carpinelli, H. H. Weitering, M. Barkowiak, R. Stumpf, and E. W. Plummwe, “Surface charge ordering transition: α phase of Sn/Ge(111)” Phys. Rev. Lett. 79, 2859 (1997).
5.17 A. Mascaraque, J. Avila, J. Alvarea, M. C. Asensio, S. Ferrer, and E. G. Michel, “Nature of the low-temperature 3×3 surface phase of Pb/Ge(111)” Phys. Rev. Lett. 82, 2524 (1999).
5.18 J. Avila, A. Mascaraque, E. G. Michel, G. LeLay, J. Ortega, R. Pérez, and F. Flores, “Dynamical fluctuations as the origin of a surface phase transition in Sn/Ge(III)” Phys. Rev. Lett. 82, 442 (1999).
5.19 R. I. G. Uhrberg, and T. Balasubramanian, “Electronic sructure of the × -a and 3×3 periodicities of Sn/Ge(111)” Phys. Rev. Lett. 81 2108 (1998).
5.20 O. Custance, J. M. Gómez-Rodríguez, A. M. Baró, L. Juré, P. Mallet, and J. Y. Veuillen, “Low temperature phases of Pb/Si(111)” Surf. Sci. 482-485, 1399 (2001).
5.21 I. S. Hwang, and J. A. Golovchenko, “Phase-transition of monolayer Pb/Ge(111)- b × -R300Û1×1 at ~ 180 ℃” Phys. Rev. B 50, 18 535 (1994).
5.22 S. A. de Vies, P. Goedtkindt, P. Steadman, and E. Vlieg, “Phase transition of a Pb monolayer on Ge(111)” Phys. Rev. B 59, 13 301 (1999).
5.23 F. Grey, R. Feidenhans’l, M. Nielsen, and R. L. Johnson, “The relationship between the metastable and stable phases of Pb Si(111)” J. Phys. 50, 7181 (1989).
5.24 R. Feidenhans’l, F. Grey, M. Nielsn, and R. L. Johnson, “Kinetics of Ordering and Growth at Surfaces”, Ed. M. G. Lagally, Plenum, New York, 1990, p.189.
5.25 A. Petkova, J. Wollschläger, H. L. Günter, and M. Henzler, “Formation and commensurate analysis of "incommensurate" superstructures of Pb on Si(111)” Surf. Sci. 471, 11 (2001).
5.26 W. B. Jian, W. B. Su, C. S. Chang, and T. T. Tsong, unpublished.
Chapter 6
6.1 D. M. Eigler, and E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscopy” Nature 344, 524 (1990).
6.2 J. A. Stroscio, and D. M. Eigler, “Atomic and molecular manipulation with the scanning tunneling microscopy” Science 254, 1319 (1991).
6.3 H. C. Manoharan, C. P. Lutz, and D. M. Eigler, “Quantum mirages formed by coherent projection of electron structure” Nature 403, 512 (2000).
6.4 E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals” Nature 394, 539 (1998).
6.5 S. Iijima, “Helical microtubules of graphitic carbon ” Nature 354, 56 (1991).
6.6 J. W. G. Wilodöer, L .C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes” Nature 391, 59 (1998).
6.7 T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Atimic structure and electronic properties of single-walled carbon nanotubes” Nature 391, 62 (1998).
6.8 M .M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes” Nature 381, 678 (1996).
6.9 H. W. C. Postma, T. Teepen, Z. Yzo, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature” Science 293, 73 (2001).
6.10 P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown” Science 292, 706 (2001).
6.11 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties” Science 283, 512 (1999).
6.12 H. Ohnishi, Y. Kondo, and K. Takayanagi, “Quantized conductance through individual rows of suspended gold atoms” Nature 395, 780 (1998).
6.13 V. Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rego, and D. Ugarte, “Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties” Phys. Rev. B 65, 153502 (2002).
6.14 J. Nogami, A. Baski, and C. F. Quate, “Aluminum on the Si(100) surface: Growth of the first monolayer” Phys. Rev. B 44, 1415 (1991).
6.15 H. Itoh, J. Itoh, A. Schmid, and T. Ichinokawa, “Structures of low-coverage phases of Al on the Si(100) surface observed by scanning tunneling microscopy” Phys. Rev. B 48, 14663 (1993)
6.16 M. M. R. Evans, and J. Nogami, “Indium and gallium on Si(001): A closer look at the parallel dimer structure” Phys. Rev. B 59, 7644 (1999).
6.17 J. Nogami. B. Z. Liu, M. V. Katkov, and C. Ohbuchi, “Self-assembled rara-earth silicide nanowires on Si(001)” Phys. Rev. B 63, 233305 (2001).
6.18 C. Preinesberger, S. K. Becker, S. Vandré, T. Kalka, and M .Dähne, “Structure of DySi2 nanowires on Si(001)” J. Appl. Phys. 91, 1695 (2002).
6.19 Y. Chen, D. A. A. Ohlberg, and R. S. Williams, “Nanowires of four epitaxial hexagonal silicides grown on Si(001)” J. Appl. Phys. 91, 3213 (2002).
6.20 Y. Fukaya, Y. Shigeta, and K. Maki, “Dynamic change in the surface and layer structure during epitaxial growth of Si on a Si(111)-7×7 surface” Phys. Rev. B 61, 13000 (2000).
6.21 B. Voigtländer and M. Käatner, “Magic islands in Si/Si(111) homoepitaxy” Phys. Rev. Lett. 81, 858 (1998).
6.22 I. S. Hwang, unpublished work.
6.23 T. C. Chang, I. S. Hwang, and T. T. Tsong, “Direct observation of reaction-limited aggregation on semiconductor surfaces” Phys. Rev. Lett. 82, 1191 (1998).
6.24 L. Seehofer, G. Falkenberg, D. Daboul, and R. L. Johnson, “Structural study of the close-packed two-dimensional phases of Pb on Ge(111) and Si(111)” Phys. Rev. B 51, 13503 (1995).
6.25 H. H. Weitering, D. R. Heslinga, and T. Hibma, “Structure and growth of epitaxial Pb on Si(111)” Phys. Rev. B 45, 5991 (1992).
6.26 I. S. Hwang, R. E. Martinez, C. Liu, and J. A. Golovchenko, “Soft incommensurate reconstruction on Pb/Si(111): Structure stress modulation, and phase transition” Phys. Rev. B 51, 10193 (1995).
6.27 E. Ganz, F. Xiong, I. S. Hwang, and J. Golovchenko, “Submonolayer phases of Pb on Si(111)” Phys. Rev. B 43, 7316 (1991).
6.28 E. Ganz, I. S. Hwang, F. Xiong, S. K. Theiss, and J. Golovchenko, “Growth and morphology of Pb on Si(111)” Surf. Sci. 257, 259 (1991).
6.29 A. Petkova, J. Wollschläger, H. L. Günter, and M. Henzler, “Formation and commensurate analysis of “incommensurate” superstructures of Pb on Si(111)” Surf. Sci. 471, 11 (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top