跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳應誠
研究生(外文):Ying-Cheng Chen
論文名稱:低溫原子之同調性導致現象
論文名稱(外文):The Coherence-Induced Phenomena in Cold Atoms
指導教授:余怡德
指導教授(外文):Ite Albert Yu
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:106
中文關鍵詞:同調性導致現象雷射冷卻電磁波導致透明受激拉曼躍遷反衝導致共振電磁波導致吸收交互作用的暗共振非線性光譜
外文關鍵詞:coherence induced phenomenalaser coolingelectromagnetically induced transparencystimulated Raman transitionrecoil induced resonanceelectromagnetically induced absorptioninteracting dark resonancenonlinear spectroscopy
相關次數:
  • 被引用被引用:5
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
我們利用磁光陷阱產生被冷卻及捕捉的低溫銣原子,再以光譜量測的方法研究低溫銣原子的同調性導致現象,所研究的現象包括電磁波導致透明(Electromagnetically induced transparency, 簡稱EIT)、受激拉曼躍遷(stimulated Raman transitions, 簡稱SRT)、反衝導致共振(recoil induced resonances, 簡稱RIR)、電磁波導致吸收(Electromagnetically induced absorption, 簡稱EIA)、及交互作用的暗共振(Interacting dark resonance, 簡稱IDR)。
電磁波導致透明是在一強耦合雷射光的作用下,原本對一弱探測光會吸收的原子會變得不吸收的現象,其原因是強耦合雷射光的存在使探測光的吸收多了很多可能的躍遷路徑,並且這些路徑間產生破壞性干涉而使吸收減小。通常電磁波導致透明只在三能階系統探討,但真實的原子包含了許多簡併的黎曼能階,我們研究簡併的黎曼能階對電磁波導致透明的影響,我們的研究表明當考慮簡併的黎曼能階後,雷射光的偏極及原子的能階組合須恰當選擇否則電磁波導致透明的效應會顯著變差。在一個特別挑選的能階系統下我們得到很好的電磁波導致透明光譜,其線寬可低於100kHz。在此系統中,我們研究磁場對光譜的影響,並且也利用電磁波導致透明現象將光的群速度減慢至每秒600公尺。
我們系統性的研究了不同偏極組態下低溫原子的激發-探測光譜,不同的偏極組態會導致非常不同的光譜特徵,這些光譜結構均小於激發態的自然線寬,但其光譜線寬、形狀和對激發雷射的頻率之相依關係差益很大。我們的研究釐清了產生這些不同特徵的光譜背後的物理機制,包含了受激拉曼躍遷、反衝導致共振及二波混合(Two-wave mixing)。
電磁波導致吸收是原子在一強耦合雷射光的作用下,會使一弱探測光的吸收加強的現象,其原因是因耦合光造成在激發態黎曼能階間的同調性經由自發輻射而轉移至基態的黎曼能階而造成。我們所得到低溫原子的電磁波導致吸收光譜線寬可低於100kHz,並且理論跟實驗光譜很一致。我們也指出電磁波導致吸收光譜可用於精密的磁場量測,並且設計了一實驗用以驗證電磁波導致吸收現象的成因。
交互作用的暗共振是電磁波導致透明效應的推廣,在磁波導致透明的三能階系統中加入一微波驅動第四個能階及強耦合光所驅動的基態,理論預測在此系統中兩個暗共振間的干涉將會在電磁波導致透明的光譜中間產生一極窄的吸收峰,我們首次在實驗上實現此預測,這個實現將開啟操控原子反應的更多可能性。
我們也提出並驗證了一個可以直接及準確地量測磁光陷阱中的原子數的簡單方法,此方法所決定的原子數不決定於雷射的偏極、強度、頻率及線寬以及其它系統參數如環境磁場等。
另外,我們也演示了此方法可應用於同調性居數侷限(Coherent population trapping, 簡稱CPT)的研究,它將可擴展CPT的研究範疇。
This thesis reports our studies on the quantum coherence and interference induced phenomena in cold 87Rb atoms The cold atoms are produced with a magneto-optical trap (MOT). The phenomena include electromagnetically induced transparency (EIT), stimulated Raman transitions (SRT), recoil-induced resonances (RIR), electromagnetically induced absorption (EIA), and interacting dark resonances (IDR).
EIT is a significant reduction of absorption experienced by a weak probe field, due to the presence of a strong coupling field on a linked transition. Destructive interference of probe absorption among different transition pathways results in the transparency. EIT is usually modeled in a three-level system. However, multi-Zeeman levels are usually involved in real atomic systems. We study the role of degenerate Zeeman levels in EIT. We demonstrate that improper choused energy-levels scheme may degrade the performance of EIT. With a better EIT scheme, we obtain very narrow EIT spectra with linewidths below than 100 kHz. We also demonstrate the slow light experiment using EIT and reduce the group velocity of light to 600 m/s.
We systematically study pump-probe spectroscopy of cold 87Rb atoms. The pump-probe spectra are measured without the presence of the trapping beams or any optical molasses. Various polarization configurations of the probe and pump fields result in very different spectra of probe absorption. The observed spectra exhibit a dispersive profile, a dispersionlike profile, a Lorentzian profile, or a dispersive and a Lorentzian profiles. The widths of all the spectral profiles are narrower than the natural linewidth of the excited state. Our work clarifies the mechanisms behind these different spectral profiles and provides essential information for the pump-probe spectroscopy of cold atoms. The mechanisms involved stimulated Raman transitions, recoil-induced resonances, and two-wave mixing.
EIA is a phenomenon that absorption of a weak probe field is enhanced by the presence of a coupling field. The physical origin of EIA is the spontaneous transfer of the light-induced coherence among degenerate Zeeman levels of excited states to those of ground states. We systematically study the EIA spectra in cold 87Rb atoms. The measured EIA linewidth can be as narrow as 100 kHz. Our work demonstrates the EIA spectrum can be applied to precision detection of magnetic fields. We also perform an experiment to support that spontaneous coherence transfer is an essential process in generating EIA phenomenon.
IDR is a phenomenon in a four-level system. The system is based on three-level -type EIT system with an additional microwave driving the magnetic dipole transition of the fourth level to the ground state that is also drove by the coupling field. Constructive interference between two dark resonances in the system produce the spectrum of a sharp and high-contrast absorption peak emerging inside the narrow EIT transparency window. We report the first experimental observation of the IDR spectrum. The success of this experiment opens more possibilities in manipulating the atomic response.
We propose and demonstrate a simple technique that accurately determines number of atoms in a magneto-optical trap. Absorption energy of a laser field that interacts with cold atoms is a direct measurement of atom number. The measured energy neither depends on the detuning, intensity, and polarization of the laser field nor on other system parameters. Our work also demonstrates that such technique can be applied to and diversify the study of coherent population trapping (CPT).
CHAPTER 1. INTRODUCTION 3
1.1 Laser cooling and trapping of atoms 3
1.2 Coherence-induced phenomena 4
1.3 Theoretical basics 5
1.4 Atomic properties of 87Rb atom 7
1.5 Brief history of our experiments 10
1.6 Overview of this thesis 11
CHAPTER 2. EXPERIMENTAL SETUP 12
2.1 Lasers and their frequencies control 12
2.2 Magneto-optical trap 13
2.3 Timing control and spectroscopic measurement 13
2.4 Magnetic field control 15
2.5 Microwave spectroscopy 16
CHAPTER 3. ELECTROMAGNETICALLY INDUCED TRANSPARENCY 19
3.1 Introduction of EIT 19
3.2 Effect of Zeeman degeneracy on EIT 24
3.3 Theoretical calculations of EIT spectra in multi-Zeeman levels systems 32
3.4 The Zeeman states EIT 35
3.5 EIT with Zeeman shift 37
3.6 Slow light experiment 42
CHAPTER 4. PUMP-PROBE SPECTROSCOPY FOR VARIOUS POLARIZATION CONFIGURATIONS 46
4.1 Introduction 46
4.2 Experimental setup 48
4.3 Theoretical calculations 50
4.3.1 The Zeeman-state calculation 50
4.3.2 The momentum-state calculation 52
4.4 Experimental spectra and discussions 52
4.4.1 lin∥lin 54
4.4.2 lin ⊥ lin 57
4.4.3 σ∥lin 60
4.4.4 σ⊥ lin 63
4.4.5 Others 65
4.5 Conclusion 67
CHAPTER 5. ELECTROMAGNETICALLY INDUCED ABSORPTION 69
5.1 Introduction 69
5.2 Experimental results and discussions 72
5.3 Theoretical calculation 76
5.4 Spontaneous coherence transfer and EIA 78
CHAPTER 6. INTERACTING DARK RESONANCE 80
6.1 Introduction 80
6.3 Theoretical treatment of IDR 82
6.4 Experimental results and discussions 85
CHAPTER 7. SIMPLE TECHNIQUE FOR DIRECTLY AND ACCURATELY MEASURING NUMBER OF ATOMS IN A MAGNETO-OPTICAL TRAP 91
7.1 Introduction of methods to measure atom number 91
7.2 Basic principle of the optical pumping method 94
7.3 Experimental results and discussions 95
7.4 Applications to the study of coherent population trapping 99
CHAPTER 8. CONCLUSIONS AND PROSPECTS 102
[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995).
[2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995).
[3] C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction. Phys. Rev. Lett. 75, 1687 (1995).
[4] T. W. Hansch and A. L. Schawlow, Cooling of gases by laser radiation. Opt. Comm. 13, 68 (1975).
[5] J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Dopper limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989).
[6] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058 (1989).
[7] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826 (1988).
[8] M. Kasevich, D. S. Weiss, E. Riis, K. Kathryn, S. Kasapi, and S. Chu, Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett. 66, 2297 (1991).
[9] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987).
[10] For a recent review, see F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999).
[11] See for example, Pierre Meystre, Atom optics. Springer (2001).
[12] For a recent review, see John Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1(1999).
[13] For a recent review, see F. M. Seeuws and P. Pillet, Formation of ultracold molecules via photoassociation in a gas of laser-cooled atoms. Advances In Atomic, Molecular, and Optical Physics, Vol. 42, 172 (1995).
[14] M. A. Kasevich, E. Riis, and S. Chu, RF spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612 (1989).
[15] The cold atoms in optical lattices simulate a clean, tunable solid-state system resembling the electron gas in periodic lattices structure. Many solid-state physics can be thus explored in such system. See for example, M. G. Raizen, C. Salomon, and Q. Niu, Phys. Today 50(7), 30 (1997).
[16] M. O. Scully and M. S. Zubairy, Quantum Optics, Chapter 7, (Cambridge University Press, 1999).
[17] For a recent review, see E. Arimondo, Coherent population trapping in laser spectroscopy. in Progress in Optics XXXV, edited by A. Wolf (Elsevier, Amsterdam, 1996), p. 258.
[18] For a recent review, see J. P. Marangos, Electromagnetically induced transparency. J. Mod. Opt. 45, 471 (1998).
[19] G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, Laser oscillation without population-inversion in a sodium atomic- beam. Phys. Rev. Lett. 76, 2053 (1996).
[20] S. E. Harris, J. E. Field, and A. Imamoğlu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990).
[21] M. O. Scully and M. Fleischhauer, High-sensivity magnetometer based on index-enhanced media. Phys. Rev. Lett. 69, 1360 (1992).
[22] A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, Experimental demonstration of enhanced index of refraction via quantum coherence in Rb. Phys. Rev. Lett. 76, 3935 (1996).
[23] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Electromagnetically induced transparency- propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995).
[24] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594 (1999).
[25] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature, Observation of coherent optical information storage in an atomic medium using halted light pulses. 409, 490 (2001).
[26] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. Storage of light in atomic vapor. 86, 783 (2001).
[27] M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, Quantum interference effects induced by interacting dark resonances. Phys. Rev. A 60, 3225 (1999).
[28] A. M. Akulshin, S. Barreiro, and A. Lezama, Electromagnetically induced absorption and transparency due to resonant 2-field excitation of quasi-denenerate levels in Rb vapor. Phys. Rev. A 57, 2996 (1998).
[29] A. Lezama, S. Barreiro, and A. M. Akulshin, Electromagnetically induced absorption. Phys. Rev. A 59, 4732 (1999).
[30] A. V. Taĭchenachev, A. M. Tumaĭkin, and V. I. Yudin, On the spontaneous-coherence-transfer-induced sign change of a sub-natural-width nonlinear resonance. JETP Lett. 69, 819 (1999).
[31] A. V. Taĭchenachev, A. M. Tumaĭkin, and V. I. Yudin, Electromagnetically induced absorption in a four-level system. Phys. Rev. A 61, 011802(R) (1999).
[32] Y. C. Chen, C. W. Lin, and I. A. Yu, Role of degenerate Zeeman levels in electromagnetically induced transparency. Phys. Rev. A 61, 053805 (2000).
[33] Present in DAMOP Meeting, London, Ontario, Canada, May 16-19, 2001.
[34] Y. C. Chen, Y. A. Liao, H. Y. Chiu, J.-J. Su, and I. A. Yu, Observation of the quantum interference phenomenon induced by interacting dark resonances. Phys. Rev. A.64,
053806, (2001).
[35] Y. C. Chen, Y. W. Chen, J. J. Su, J. Y. Huang, and I. A. Yu, Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations. Phys. Rev. A 63, 043808 (2001).
[36] Y. C. Chen, Y. A. Liao, L. Hsu, and I. A. Yu, Simple technique for directly and accurately measuring the number of atoms in a Magneto-Optical Trap. Phys. Rev. A 64, 031401(R)
(2001).
[37] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions---Basis Processes and Applications (John Wiley & Sons, New York, 1992).
[38] C. Cohen-Tannoudji, in Froniters of Laser Spectroscopy, edited by R. Balian, S. Haroche, and S. Liberman (North-Holland, Amsterdam, 1977) Vol. 1.
[39] 林重維, 碩士論文「黎曼能階對電磁波引發透明的影響」, 清華大學物理系 (1999).
[40] 陳韻文, 碩士論文「量子干涉非線性光譜之理論計算」, 清華大學物理系 (2000).
[41] 蘇蓉容, 碩士論文「量子干涉現象的費曼圖形分析法」, 清華大學物理系(2001).
[42] J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, (Adam Hilger,Bristol and Philadelphia 1989).
[43] G. Breit and I. I. Rabi, Measurement of nuclear spin. Phys. Rev. 38, 2082(1931).
[44] B. J. Dalton and P. L. Knight, The effects of laser field fluctuations on coherent population trapping. J. Phys. B. 15, 3997 (1982).
[45] C. Monroe, W. Swann, H. Robinson, and C. Wieman, Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 65, 1571 (1990).
[46] J. Gea-Banacloche, Y. Q. Lin, S. Z. Jin, and M. Xiao, Electromagnetically in duced transparency in ladder-type inhomogeneously broadened media-theory and experiment. Phys.
Rev. A. 51, 576 (1995).
[47] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Observation of Electromagnetically in duced transparency. Phys. Rev. Lett. 66, 2593 (1991).
[48] M. Xiao, Y. Q. Lin, S. Z. Jin, and J. Gea-Banacloche, Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666
(1995).
[49] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys.Rev. A. Continuous-wave electromagnetically induced transparency- A comparison of V-
system, -system, and cascade system. Phys. Rev. A. 52, 2302 (1995).
[50] Y. Q. Li and M. Xiao, Electromagnetically induced transparency in a 3-level Lambda-system in rubidium atoms. Phys. Rev. A. 51, R2703 (1995).
[51] Y. Q. Li and M. Xiao, Phys. Observation of quantum interference between dressed states in an
electromagnetically induced transparency. Phys. Rev. A. 51, 4959 (1995).
[52] A. V. Durrant, H. X. Chen, S. A. Hopkins, and J. A. Vaccaro, Electromagnetically induced transparency of laser-cooled of rubidium atoms in 3-level Lambda-type systems. Opt. Commun. 151, 185 (1997).
[53] F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, and M. Prevedelli, Electromagnetically induced transparency in cold free atoms-Test of a sum-rule for nonlinear optics. Phys. Rev. A,56, 2221 (1997).
[54] Y. W. Chen, C. W. Lin, Y. C. Chen, and I. A. Yu, submitted to J. Opt. Soc. Am. B.
[55] S. Wang, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, Coherent population trapping and four-wave mixing via dark states in Doppler-broadened rubidium atomic syatem Phys. Rev. A 61, 033805 (2000).
[56] S. E. Harris, J. E. Field, and A. Kasapi, Dispersive properties of electromagnetically induced transparency Phys. Rev. A 46, R29 (1992).
[57] S. E. Harris and L. V. Hau, Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999).
[58] M. D. Lukin and A. Imamoğlu, Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419 (2000).
[59] A. B. Matsko, Y. V. Rostovtsev, M. Fleischhauer, and M. O. Scully, Anomalous stimulated Brillouin scattering via ultraslow light. Phys. Rev. Lett. 86, 2006 (2001).
[60] U. Leonhardt and P. Piwnicki, Ultrahigh sensitivity of slow-light gryscope. Phys. Rev. A 62, 055801 (2001).
[61] D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, and G. Grynberg, Raman-spectroscopy of cesium atoms in a laser trap. Europhys. Lett. 15, 149 (1991).
[62] J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap. Phys. Rev. Lett. 66, 3245 (1991).
[63] P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J. -Y. Courtois, and G. Grynberg, Dynamics and spatial order pf cold cesium atoms in a periodic optical-potential.Phys. Rev. Lett. 68, 3861 (1992).
[64] B. Lounis, J.-Y. Courtois, P. Verkerk, C. Salomon, and G. Grynberg, Measurement of the friction coefficient in 1D corkscrew optical molasses by stimulated Rayleigh spectroscopy.
Phys. Rev. Lett. 69, 3029 (1992).
[65] P. S. Jessen, C. Grez, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I.Westbrook, Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett 69, 49 (1992).
[66] R. W. Fox, S. L. Gilbert, L. Hollberg, and J. H. Marquardt, Optical probing of cold trapped atoms. Opt. Lett. 18, 1456 (1993).
[67] N. Ph. Georigades, E. S. Polzik, and H. J. Kimble, 2-photon spectroscopy of 6S1/2 to 6D5/2 transition of trapped atomic cesium. Opt. Lett. 19, 1474 (1994).
[68] A. G. Sinclair, B. D. McDonald, E. Riis, and G. Duxbury, Double-resonance spectroscopy of laser-cooled Rb atoms. Opt. Commun. 106, 207 (1994).
[69] M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, 2-photon spectroscopy of laser-cooled Rb using a mode-locked laser. Opt. Commun. 125, 70 (1996).
[70] M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and P. H. McIntyre, Doughnut mode magneto-optical trap. J. Opt. Soc. Am. B 14, 544 (1997).
[71] J. L. Sorensen, J. Hald, and E. S. Polzik, Spectroscopy on a modulated magneto-optical trap. Opt. Lett. 23, 25 (1998).
[72] M. Mitsunaga, T. Mukai, K. Watanabe, and T. Mukai, Dressed-atom spectroscopy of cold Cs atoms. J. Opt. Soc. Am. B 13, 2696 (1996).
[73] G. Grynberg, M. Vallet, and M. Pinard, Redistribution of photon and frequency mixing with cross-polarized beams in sodium. Phys. Rev. Lett. 65, 701 (1990).
[74] M. Vallet, M. Pinard, and G. Grynberg, 2-wave mixing with cross-polarized beams in sodium- a quantitative investigation. Opt. Commun. 87, 340 (1992).
[75] J. -Y. Courtois and G. Grynberg, Probe transimission in one-dimensional optical molasses —theory for linearly cross-polarized cooling beams. Phys. Rev. A 46, 7060 (1992).
[76] J. Guo, Contribution of energy continuum states to probe absorption signal of atoms in one-dimensional optical molasses. Phys. Rev. A 49, 3934 (1994).
[77] Y. W. Chen, C. W. Lin, Y. C. Chen, and I. A. Yu, submitted to J. Opt. Soc. Am. B .
[78] J. Guo, P. R. Berman, B. Dubesky, and G. Grynberg, Recoil-induced resonances in nonlinear spectroscopy. Phys. Rev. A 46, 1426 (1992).
[79] J. Guo and P. R. Berman, Recoil-induced resonances in pump-probe spectroscopy including effect of level degeneracy. Phys. Rev. A 47, 4128 (1993).
[80] J.-Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, Recoil induced resonances in cesium- an atomic analog to the free-electron laser. Phys. Rev. Lett. 72, 3017 (1994).
[81] P. R. Berman, B. Dubetsky, and J. Guo, Recoil-induced resonances in pump-probe spectroscopy. Phys. Rev. A 51, 3947 (1995).
[82] D. R. Meacher, D. Boiron, H. Metcalf, C. Salomon, and G. Grynberg, Method for velocimerty of cold atoms. Phys. Rev. A 50, R1992 (1994).
[83] S. Guibal, C. Triche, L. Guidoni, P. Verkerk, and G. Grynberg, Recoil-induced resonances of cesium atoms in transient domain. Opt. Commun. 131, 61 (1996).
[84] J.-Y. Courtois and G. Grynberg, Probe transimission in one-dimensional optical molasses —theory for circularly cross-polarized cooling beams. Phys. Rev. A 48, 1378 (1993).
[85] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle,Phys. Rev. Lett. 82, 4569 (1999).
[86] J. M. Vogels, K. Xu, C. Raman, J. R. Abo-Shaeer, and W. Ketterle, Phys. Rev. Lett. 88, 060402 (2002)
[87] S. G. Rautian, Spontaneous optical-coherence transfer and the nonlinear spectroscopy of gases .JETP, 88, 6 (1999) and references therein.
[88] S. E. Harris and Y. Yamamoto, Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998).
[89] H. Schmidt and A. Imamoğlu, Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936 (1996).
[90] Min Yan, Edward G. Rickey, and Yifu Zhu, Observation of doubly dressed states in cold atoms. Phys. Rev. A 64, 013412 (2001).
[91] Min Yan, Edward G. Rickey, and Yifu Zhu , Observation of absorptive photon switching and suppression of two-photon absorptions in cold atoms. J. of Mod Opt. 49, 675 (2002).
[92] M. T. DePue, S. L. Winoto, D. J. Han, and D. S. Weiss, Transient compression of a MOT and high intensity fluorscent imaging of optical thick clouds of atoms. Opt. Commun. 180, 73
(2000).
[93] K. E. Gibble, S. Kasapi, and S. Chu, Improved magneto-optic trapping in a vapor cell. Opt. Lett. 17, 526 (1992).
[94] J. R. Morris, and B. W. Shore, Reduction of degenerate 2-level excitation to independent 2-state systems. Phys. Rev. A 27, 906 (1983).
[95] F. T. Hioe and C. E. Carroll, Coherent population trapping in N-level quantum-systems. Phys. Rev. A 37, 3000 (1988).
[96] V. S. Smirnov, A. M. Tumaikin, and V. I. Yudin, Stationary coherent states of atoms on resonant interaction with elliptically polarized-light-coherent trapping of populations. Zh. Eksp. Theor. Fiz. 96, 1613 (1989).
[97] F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Coherent population trapping with losses observed on the Hanle effect of the D-1 sodium line. Phys. Rev. A 55, 3710 (1997).
[98] V. Milner and Y. Prior, Multilevel dark states- coherent population trapping with elliptically polarized incoherent-light. Phys. Rev. Lett. 80, 940 (1998).
[99] F. Renzoni and E. Arimondo, Depopulation and repopulation pumping in coherent population trapping. Europhys. Lett. 46, 716 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top