跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳誌笙
研究生(外文):Jeah-Sheng Wu
論文名稱:3.5米真空雙折射實驗原型干涉儀之架設與高精密度偏振檢測
論文名稱(外文):Building a 3.5m prototype interferometer for the vacuum birefringence experiment and high precision ellipsometry
指導教授:倪維斗
指導教授(外文):Wei-Tou Ni
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:129
中文關鍵詞:真空雙折射Fabry-Perot干涉儀交叉擺雷射穩頻Pound-Drever穩頻法Cotton-Mouton效應偏振檢測
外文關鍵詞:vacuum birefringenceFabry-Perot interferometerx-pendulumlaser frequency sabilizationPound-Drever schemeCotton-Mouton effectellipsometry
相關次數:
  • 被引用被引用:2
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
3.5米真空雙折射實驗原型干涉儀是一組精細度為17000(後來降至11620)的高精密Fabry-Perot干涉儀,利用Fabry-Perot干涉儀在偵測光程變化上的靈敏特性,鑑別不同偏振方向入射光的光速差異。干涉儀的兩面反射鏡分別置放在兩組真空腔中,反射鏡分別由兩組獨立的減震懸吊系統(由交叉擺與雙重擺組成)懸吊以隔絕來自地面震動的雜訊,交叉擺的共振頻率約為0.2Hz,對於1Hz以上的地面雜訊提供極佳的阻絕。
偵測雙折射效應使用的穩頻雷射(波長1.064um)
以3.5米原型干涉儀的一個縱模為參考頻率,使用Pound-Drever穩頻法將雷射頻率鎖在干涉儀的共振模上;3.5米干涉儀原型的入口端與出口端分別放置漏光率(extinction ratio)達10^{-7}數量級的偏極鏡作為偏振檢測之用,測量空氣的Verdet常數(Faraday 旋轉)的螺線管產生的軸向磁場為21 Gauss/ Amp ,實驗中分別通以直流電源以及頻率為100 Hz的交流電源至螺線管,測得一大氣壓下的Verdet係數為C_v=3.9x10^{-10} Rad/Gauss-cm。
空氣的Cotton-Mouton常數測量實驗中,干涉儀原型的光軸通過一組有效作用區段為21 cm的二極電磁鐵,磁場方向垂直於干涉儀光軸,磁鐵產生的最大磁場約為12000 Gauss,以50 mHz 的電流調變磁場,記錄不同磁場下的偏振變化,並考慮非橫向磁場耦合的偏振變化量,測得空氣在常溫常壓下的Cotton-Mouton係數為C_{cm} = 7.5x10^{-17} rad/Gauss^2-cm。
使用雙調變偵測法(磁場調變加上偏振旋轉調變,調變強度為0.019 Rad/Amp整合測試3.5米干涉儀原型的靈敏度,以100 Hz 的訊號調變Faraday晶體並以50 mHz的訊號調變橫向磁場,實驗結果3.5米干涉儀原型的靈敏度約為5.1x10^{-6} rad/sqrt{Hz},一次積分時間可達44分鐘,靈敏度達1x10^{-7}rad。
A 3.5m prototype interferometer was formed using a high finesse Fabry-Perot interferometer. Taking the advantage of Fabry-Perot interferometer, the phase difference of incident light with different polarization will be enhanced.
Each mirror of the 3.5m prototype interferometer was sited on a vacuum chamber with suspension system inside each chamber.
X-pendulum plus double pendulum offers briliant rejecting power from seismic noise higher than a few Hz. The resonant frequency of X-pendulum suspension system was measured to be around 0.2 Hz.
Laser frequency was locked on the axial mode of the 3.5m prototype interferometer using a Pound-Drever scheme. Polarizers were the key component of ellisometry. The polarizer used in our experiment was Glan-Thompson type with extinction ratio 2.6x10^{-7} Rad, while the analyzer was Glan-Laser type with extinction ratio measured 9x10^{-7}.
Due to it''s high sensitivity, the prototype interferometer could be used to probe the anisotropy of dilute material, say air or pure gas. The axial magnetic field was generated by a solenoid. When applying a current to the solenoid, the response of the axial magnetic field was 21 Gauss/Amp. In the experiment of measuring Verdet constant, we apply both DC and 100Hz AC current to the solenoid. Verdet constant of air was measured C_v=3.9x10^{-10} Rad/Gauss-cm under room temperature and normal pressure.
The measurement of Cotton-Mouton constant follows in similar way. A dipole electromagnet with maximum field of 12000 Gauss and effective length 21 cm was located in the middle of prototype interferometer. Modulate the magnetic field by varing the supply current with 50 mHz frequency.
Also take into consideration of the coupling contribution from non-transverse magnetic field. We conclude that the Cotton-Mouton constant of air under room temperature was measured to be C_{CM}=7.5x10^{-17} Rad/Gauss^2-cm.
The present sensitivity of 3.5m prototype interferometr was determined using double modulation scheme. Polariztion modulation of output signal was formed by a Faraday cell with the modulation depth response 0.019 Rad/Amp. Together with modulated magnetic field the sqrt{Hz} sensitivity of 3.5m prototype interferometer was 5.1x10^{-6} Rad/sqrt{Hz}.
With integration time 44 min,the sensitivity reaches 1x10^{-7}Rad in polarization.
1.導論
1.1 真空理論的歷史
1.2 真空的雙折射性
1.3 量子電動力學
1.4 軸粒子理論
1.5 真空的光學實驗
1.6 真空雙折射實驗比較
1.7 論文章節概要
2.偏振量測
2.1 偏振光學與偏振特性量測
2.2 Fabry-Perot 干涉儀
2.3 磁鐵
2.4 偏振調制檢測
2.5 真空設備
3.3.5米Fabry-Perot干涉儀原型:光學系統
3.1 雷射穩頻
3.2 雷射
3.3 光學隔離器
3.4 電光調制晶體
3.5 混波原件與相位偏移原件
3.6 3.5米干涉儀
3.7 精細度量測1:掃頻Fabry-Perot共振腔
3.8 精細度量測2:掃頻法衍生
3.9 精細度量測3:存活時間
4.3.5米Fabry-Perot干涉儀原型:懸吊系統
4.1 單擺系統
4.2 交叉擺系統
4.3 交叉擺減振特性量測
4.4 反射鏡懸吊
4.5 減振系統整合測試
4.6 渦電流阻泥系統
5.3.5米Fabry-Perot干涉儀原型:控制系統
5.1 雷射頻率控制
5.2 雷射頻率控制整合模擬
5.3 腔長控制
5.4 腔長控制整合模擬
6.氣體分子偏振特性量測
6.1 空氣的Verdet常數
6.2 空氣的Cotton-Mouton常數
7.真空雙折射干涉儀原型靈敏度
7.1 雙調制偵測法
7.2 氣體的Cotton-Mouton係數
7.3 偏振偵測靈敏度
7.4 雷射穩頻穩定度
7.5 3.5米干涉儀偵測極限
8.結論與展望
8.1 3.5米干涉儀原型實驗結果
8.2 未來展望
[1]倪維斗,
"雷射測長及其在物理實驗、精密天文觀測和計量標準上的應用",
物理雙月刊,(二十卷五期),(1998),pp572。
[2]倪維斗,\ "量子電動力學真空雙折射性及軸粒子交互作用之實驗研究",
行政院國家科學委員會專題研究計畫,1994。
[3]鄭宏文,
"懸吊式法布里-裴洛(Fabry-Perot)共振腔的建立與雙折射性的測定"
國立清華大學碩士論文,1995年。
[4]吳誌笙,
Ŕ.67 米光學模態純化共振腔之設計與製作",
國立清華大學碩士論文,1996年。
[5]施能謙,
"Fabry-Perot 干涉儀雙折射測量先期研究-Nd:YAG雷射穩頻"
國立清華大學碩士論文,1996年。
[6]Thomas S. Kuhn,
"The Structure of Scientific Revolutions",
University of Chicago Press,1996
[7]E. Euler,
Ann. der Phys.(Leipzip),26 (1936), pp398
[8]W.Heisenberg, E.Euler,
Zeits. fur Phys., 98 (1936), pp714
[9]S.L.Adler,
Ann. Phys. (USA),87 (1971), pp599
[10]W.T.Ni,
"Magnetic Birefringence of Vacuum-Q&A Experiment",
Frontier test of QED and Physics of the Vacuum,Heron Press, 1998
[11]W.Dittrich,H. Gies
"Vacuum birefringence in strong magnetic field",
Frontier test of QED and Physics of the Vacuum,Heron Press, 1998
[12]W. T. Ni, K. Tsubono, N. Mio, K. Narihara, S. C. Chen, S. K. King, S. S. Pan,
"Test of quantum electrodynamics using ultra-high sensitive interferometers",
Mod. Phys. Lett. A, 40, (1991), pp3671
[13]Albert A.Michelson,Edward W.Morley,
"On the relative motion of the earth and the luminferous other",
Am. J. Sci., 34, (1887), pp333
[14]A. Yariv, P. Yeh,
"Optical waves in crystals"
John Wiley & Sons,Inc,1984
[15]C. Rizzo, A. Rizzo,D. Bishop,
"The Cotton-Mouton effect in gases:experiment and theory",
Int. Rev. Phys. Chem.,16 (1), (1997), pp81
[16]F. Brandi, F. Della Valle, P. Micossi, A. M. De Riva, G. Zavattini,F. Perrone, C. Rizzo, G. Ruoso,
"Cotton-Moutotn effect of molecular oxygen:a novel measurement"
J. Opt. Soc. Am. B,15(4), (1996), pp1278
[17]R. E. Cameron,
"Search for new photon couplings in a magnetic field",
Ph. D. Thesis, University of Rochester.
[18]H. Murayama, G. Rafflet, C. Hagmann, K. van Bibber,L. J. Rosenberg,
"Axions and other very light bosons",
The Euro. Phys. J.,C15, (2000), pp1
[19]E. Iacopini, E. Zavattini,
Phys. Lett.,85B(1979),pp151.
[20]R. Cameron, G. Cantatore, A. C. Melissinos, G. Ruoso, Y. Semertzidis, H. J. Halama, D. M. Lazarus, A. G. Prodell, F. Nezrick, C. Rizzo, E. Zavattini,
"Search for nearlt massless, weakly coupled particles by optical techniques",
Phys. Rev. D,47(9), (1993), 3707
[21]
"Light retardation in a high magnetic field
and search for light scalar/psudo-scalar particles
using ultra-sensitive interferometry",
Joint EOI(Expression Of Interest)
submitted to National Science Council of Republic of China
and the Department of Energy of the United States of America(Apr, 1994)
[22]S.Askenazy, C.Rizzo, O.Portugall,
"A dipole high-field pulsed magnet to explore the magnetc birefringence of vacuum",
Physica B,5(9),(2001),pp294.
[23]G. P. Konnen,
"Polarized light in nature",
Cambridge University Press,1985
[24]F. A. Jenkins, H. E. White,
"Fundamentals of optics",
McGraw-Hill,1957
[25]J.-B. Biot,
M\''{e}m. Acad. Sci. 2(1817)43
[26]M. Valet,F. Bretenaker,A. Le Floch,R. Le Naour,M. Oger,
"The Malus Fabry-Perot interferometer",
Opt. Comm., 168, (1999), pp423
[27]F. Brandi, F. Della Valle, A. M. De Riva, P. Micossi,
F. Perrone, C. Rizzo, G. Zavattini,
"Measurement of the phase anisotropy of very high reflectivity interferential mirrors",
Appl. Phys. B, 65, (1997), pp351
[28]A. E. Siegman,
"Lasers"
University Science Books,1986
[29]R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough
G. H. Ford, A. J. Munley, H. Ward,
"Laser phase and frequency stabilization using an optical resonator",
Appl. Phys. B, 31,(1983),pp97
[30]R. V. Pound,
"Electronic frequency stablization of Microwave oscillators",
Rev. Sci. Instrum.,{\bf 17}(11),(1946),pp490
[31]T. Day, E. K. Gustafson, R. L. Byer,
"Sub-Hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer",
IEEE J. Quan. Elec., 28(4),(1992),pp1106
[32]F.L. Walls, D.W. Allen,
"Measurements of frequency stability",
Proceedings of the IEEE,74(1),(1986),pp162
[33]David W. Allen,
"Should classical variance be used as a basic measure
in standard metrology",
IEEE transactions on instruments and measurement,IM-36(2),(1987),pp646
[34]N. UeHara, K. Ueda,
sub-mHz beat linewidth of frequency-stabilized laser-diode pumped Nd:YAG ring laser",
Opt. Lett.,18(7),(1993),pp505
[35]J. M. Khosrofian, B. A. Garetz,
"Measurement of a Gaussian laser beam diameter through the direct inversion knife-edge data"
Appl. Opt., 22(21),(1983),pp3406
[36]C. Harb, M. B. Gray, H. A. Bachor, R. Schilling,
P. Rottengatter, I. Freitag, H. Welling,
"Suppression of the intensity noise in a diode-pumped Neodymium:YAG nonplanar ring laser",
IEEE J. Quan. Elect., 30(12), (1994),pp2907
[37]T. J. Kane,
"Intensity noise in diode-pumped single-frequency Nd:YAG lasers
and its control by electronic feedback",
IEEE Pho. Tech. Lett., {\bf 2}(4),(1990),pp244
[38]M. Born, E. Wolf,
"Principles of optics",
Pergamon Press,1980
[39]Z. Li, R. G. T. Benett, G. E. Stedman,
"Swept-frequency induced optical cavity ringing",
Opt. Comm., 86, (1991), pp51
[40]Z. Li, G. E. Stedman, H. R. Bilger
"Asymmetric response profile of a scanning Fabry-Perot inteferometer",
Opt. Comm., 100, (1993), pp240
[41]J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch,
"Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesse",
J. Opt. Soc. Am. B, 14(11), (1997), pp2811
[42]D. Z. Anderson, J. C. Frisch, C. S. Masser,
"Mirror reflectometer based on optical cavity decay time",
Appl. Opt., 23(8), (1984), pp1238
[43]N. UeHara, K. Ueda,
"Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response function",
Appl. Phys. B, 61,(1996),pp9
[44]Peter R. Saulson
"Fundamentals of Interferometric gravitational wave detectors",
World Scientific Publication, 1994
[45]K. Tsubono, M.-K. Fujimoto, K. Kuroda
"Gravitational wave detection",
Universal Academy Press, 1996
[46]S. Kawamura, K. Tsubono
"Gravitational wave detection II",
Universal Academy Press, 2000
[47]M. A. Barton, K. Kuroda,
"Ultralow frequency oscillator using a pendulum with crossed suspension wires",
Rev. Sci. Instrum. 65, (1994), pp3775
[48]N. Kanda, M. Barton, K. Kuroda,
"Transfer function of a crossed wire pendulum isolation system",
Rev. Sci. Instrum., 65(12),(1994),pp3780
[49]M. A. Barton, N. Kanda, K. Kuroda,
"A low-frequency vibration isolation table using multiple crossed-wire suspension",
Rev. Sci. Instru., 67(11), (1996), pp3994
[50]M. Barton, T. Uchiyama, K. Kuroda, N. Kanda, H. Ishizuka,
"Two-dimensional X pendulum vibration isolation table",
Rev. Sci. Instrum., 70(11), (1999), pp2150
[51]D.Tatsumi, M. Barton, T. Uchiyama, K.Kanda,
"Two dimensional low-frequency vibration attenuator using X pendulum",
Rev. Sci. Instrum., 70(2),(1999),pp1561
[52]T. Day,
"Frequency stabillized solid state lasers for coherent optical communications"
Ph. D. Thesis , Stanford University, 1991
[53]K. Tsubono, A. Araya, K. Kawabe, A. Moriwaki, N. Mio,
"Triple-pendulum vibration isolation system for a laser interferometer",
Rev. Sci. Instrum.,64(8),(1993),pp2237
[54]O. Mor, A. Arie,
"Performance analysis of Drever-Hall laser frequency stabilization using a proportional + integral servo",
IEEE J. Quan. Elec., 33(4),(1997),pp532
[55]G. F. Franklin, J. D. Powell, A. Emami-Naeini,
"Feedback control of dynamic systems",
Addison-Wesley Publishing Company
[56]P. Horowitz, W. Hill,
"The art of electronics",
Cambridge University Press
[57]J. Keown,
"MicroSim PSpice and circuit analysis",
Prentice-Hall Inc, 1998
[58]B. C. Kuo,
"Digital control systems",
Saunders College Publishing
[59]D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R.Le Naour,
"Small Faraday rotation measurement with a Fabry-Perot cavity",
Appl. Phys. Lett., 66(26), (1995), pp3546
[60]
"American Institute of Physics Handbook",
Table 6m-1a, pp6-230
[61]D. Chauvat, A. Le Floch, M. Vallet, F. Bretenaker,
"Cotton-Mouton effect measurement with Fabry-Perot eigenstates",
Appl. Phys. Lett., 73(8), (1998), pp1032
[62]P.Saulson,
"Thermal noise in mechanical experiments",
Phys. Rev. D, 42(8),(1990), pp2437
[63]F.Brandi, M.Bregant, G.Cantatore, F.Della Valle, S.Carusotto, G.Di Domenico, U. Gastaldi, E. Milotti, R.Pengo, E.Polacco, C.Rizzo, G.Ruoso, E. Zavattini, G. Zavattini
"Optical production and detection of dark matter candidates",
Nucl. Instrum. and Meth. in Phys. Res. A , 461, (2001), pp329
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top