跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李可欣
論文名稱:改良型同質雙磊晶約瑟芬元件之研究
論文名稱(外文):A study of the modified homo-biepitaxial grain boundary Josephson junction
指導教授:齊正中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:70
中文關鍵詞:同質雙磊晶結構約瑟芬結高溫高導
外文關鍵詞:bi-epitaxial grain boundaryJosephson junctionhigh-Tc superconductor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了能更深入了解在近期發展的同質雙磊晶晶界結中,其臨界電流密度和晶界角度的關係,我們花了許多時間在製作良好的450雙磊晶結構。然而,在實驗過程中發現,原本的同質雙磊晶YBCO(高溫)/YBCO(低溫)/YSZ及YBCO(高溫)/YSZ結構無法呈現良好的450相對旋轉角度。因此,我們做了一系列YBCO和YSZ之間a-b平面的磊晶關係實驗,並發現a-b平面相對基板的旋轉角度與鍍膜成長溫度和基板表面性質有極大的關係。由於此因素,我們發展出另一種改良的同質雙磊晶結構:YBCO(8300C)/YBCO(6600C)/YSZ (a-b平面相對基板旋轉450)及YBCO(8300C)/YBCO(6600C)/YBCO(8300C)/YSZ (a-b平面相對基板旋轉00)。由此改良型結構製作出的450雙磊晶約瑟芬元件呈現電阻串接接面(RSJ)的弱連結行為,其超導臨界電流密度在4.2K下為103 A/cm2以上。另外,由臨界電流和外加磁場的實驗數據發現,微觀切面在晶界上的分布和晶界角度並沒有系統的變化關係。
In order to further understand the newly developed homo-biepitaxial junctions and the dependence of the critical current density with the tilt grain boundary angles, we spent lots of time on reproducing a good 450 bi-epitaxial structure with pure in-plane rotations in each part. However, we found that it was rather difficult to achieve the bi-epitaxial rotation angles with the original homo-biepitaxial structures [YBCO(high-T)/YBCO(low-T)/YSZ and YBCO(high-T)/YSZ]. Besides, an overall survey of in-plane epitaxial relationships between YBCO and YSZ was done. We found that the in-plane rotations strongly depend on the deposition temperatures and substrate surface properties. Due to this reason, we modified the bi-epitaxial structure becoming YBCO(8300C)/ YBCO(6600C)/ YSZ (in-plane rotation 450) and YBCO(8300C)/ YBCO(6600C)/ YBCO(8300C)/ YSZ (in-plane rotation 00). The grain boundary Josephson junction made of this modified structure exhibits the RSJ behavior and the Jc is ~ 103 A / cm2 at 4.2 K. However, the Ic-H measurements show that there is no obvious relation between faceting distribution and the tilt grain boundary angles.
Abstract
List of figures
List of tables
Chapter 1 : Introduction
1.1 The background of high-Tc superconductors
1.2 Motivation
Chapter 2 : Thin Film Synthesis
2.1 Principle of Pulsed-Laser Deposition
2.2 Experimental Equipment and parameters for the
thin film growth
2.3 Thin Films Characterization
2.3.1 X-ray Diffraction
2.3.2 Resistivity-Temperature measurement
2.3.3 Thickness measurement
2.3.4 X-ray ψ-scan
Chapter 3 : In-plane Epitaxy of YBCO / YSZ
3.1 Introduction
3.2 Experiment
3.3 Structural properties
3.4 Discussion
Chapter 4 : The 450 grain boundary junction
4.1 Josephson junction and RSJ model
4.2 The background of bi-epitaxial grain boundary
junction
4.3 The fabrication of modified 450 bi-epitaxial
grain boundary
4.3.1 Motivation
4.3.2 Junction synthesis
4.3.3 Patterning
4.4 Results and discussion
4.4.1 Structural properties and R-T curve
4.4.2 Current-voltage curves
4.4.3 A potential bi-epitaxial structure
fabrication process
Chapter 5 : Magnetic field dependence of supercurrent in 450
grain boundary junction
5.1 Josephson junction in magnetic field
5.2 D-wave and faceting effect for the transport
properties of grain boundaries
5.3 Ic-H behavior
5.4 Ic-H measurement
5.5 Results and discussion
5.5.1 Ic-H curves
5.5.2 Fourier transform
5.5.3 Discussion
Chapter 6 : Conclusion and future work
Reference
1.J.G. Bednorz and K.A. Muller, Phys. B 64, 189 (1986).
2.M.K. Wu, J.R. Ashburn, C.T. Torng, P.H. Hor, R.L. Meng, L.
Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett.
58, 908 (1987).
3.D. Dilkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N.Jisrawi,
Y.H. Min-Lee, W.L. Mclean, and M. Croft, Appl. Phys.
Lett. 51, 619 (1987).
4.S. Witanachchi, H.S. Kwok, X.W. Wang, and D.T. Shaw, Appl.
Phys. Lett. 53, 234 (1988).
5.G. Koren, A. Gupta, R.J. Baseman, M.I. Lutwyche, and R.B.
Laibowitz, Appl. Phys. Lett. 55, 2450 (1989).
6.E.M. Alimine, F.E. Pagaduan, M.M. Rahman, C.Y. Yang, H.
Inlkawa, D.K. Fork, and T.H. Geballe, Appl. Phys. Lett. 59,
733 (1991).
7.R.K. Singh et. al., Materials Science and Engineering, 1998.
8.S.R. Foltyn, R.E. Muenchausen, R.C. Estler, E. Peterson, W.B.
Hutchinson, K.C. Ott, N.S.Nogar, and K.M. Hubbard, Mater.
Res. Soc. Symp. Proc. 191, 205 (1990).
9.S.M. Garrison, N. Newman, B.F. Cole, K.Char, and R.W. Barton,
Appl. Phys. Lett. 58, 2168, (1991).
10.J.A. Alarco, G.. Brorsson, Z.G. Ivanov, P.A. Nilsson, E.
Olsson, and M. Lofgren, Appl. Phys. Lett. 61, 723 (1992).
11.J.G.. Wen, C. Traeholt, H.W. Zandbergen, K. Joosse, E.M.C.M.
Reuvekamp, and H. Rogalla, Physica C 218, 29 (1993).
12.L.A. Tietz, C.B. Carter, D.K. Lathrop, S.E. Russek, R.A.
Buhrman, and J.R. Michael, J. Mater. Res. 4, 1072 (1989).
13.T.S. Ravi, D.M. Hwang, R. Ramesh, S.W. Chan, L. Nazar, C.Y.
Chen, A. Inam, and T. Venkatesan, Phys. Rev. B 42, 10141
(1990).
14.B.D. Josephson, Phys. Lett. 1, 251 (1962).
15.T. Van Duzer, and C.W. Turner, Principles of
Superconductives Devices and Circuits.
16.N.G. Chew, and S.W. Goodyear, Appl. Phys. Lett. 60, 1516,
1992.
17.K. Char, M.S. Cololugh, S.M. Garrison, N. Newman, and G.
Zaharchuk, Appl. Phys. Lett. 59, 733 (1991).
18.K. Char, M.S. Cololugh, L.P. Lee, and G.. Zaharchuk, Appl.
Phys. Lett. 59, 2177 (1991).
19.M.Y. Li, et. al, Physica C 235, 589 (1994).
20.S.H. Tsai, C.C. Chi, M.K.Wu, Chinese J. Phys. 36, 355 (1998).
21.S.H. Tsai, C.C. Chi, M.K.Wu, Physica C 339, 155 (2000).
22.R. Gross, P. Chaudhari, D. Dimos, A. Gupta, and G. Koren,
Phys. Rev. Lett. 64, 228 (1990).
23.D.Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41,
4038 (1990).
24.A. Barone, and G. Paterno, Physics and Applications of the
Josephson Effect.
25.D.Dimos, P. Chaudhari, J. Mannhart, and F.K. LeGoues, Phys.
Rev. Lett. 61, 219 (1988).
26.S.E. Russek, D.K. Lathrop, B.H. Moeckly, R.A. Buhrmann, and
D.H. Shin, Appl. Phys. Lett. 57, 1155 (1990).
27.R. Gross, P. Chaudhari, M. Kawasaki, and A. Gupta, Phys.
Rev. B 42, 10735 (1990).
28.H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev. B 53,
14586 (1996).
29.R.G. Mints, V.G. Kogan, Phys. Rev. B 55, R8682 (1997).
30.蔡淑惠, 清華大學物理研究所, 博士論文 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top