跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 12:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗賢
研究生(外文):Tzong-Shyan Lin
論文名稱:液晶在表面電漿激發,層狀波導之模態分裂,及其動態反應之研究
論文名稱(外文):Surface Plasmon Excitation, Mode Splitting in Slab Wave Guides and Dynamic Oscillation Studies of Liquid Crystals
指導教授:呂助增
指導教授(外文):Juh-Tzeng Lue
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:112
中文關鍵詞:液晶表面電漿層狀波導模態分裂扭轉型液晶盒雙折射
外文關鍵詞:liquid crystalsurface plasmonslab waveguidemode splittingTN cellbirefringenceanisotropic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
液晶具有雙折射的性質,而且液晶分子會受外加電場影響而指向趨於平行或垂直於電場方向。我們可以把這性質應用在改變表面電漿波發生角度以及改變波導模態上面。實驗上發現表面電漿發生角度即使在大電壓作用下變化並不大,這可用臨近金屬膜的液晶層受邊界作用力影響很大來解釋。在液晶作為夾層的層狀波導實驗,我們發現有模態分裂的情形,這可用液晶雙折射的原理模擬出來。另外,過去對於扭轉型液晶盒的穿透光在電壓開與關的瞬間會有振盪的情形,多以流動效應來解釋。但我們可給出在只考慮液晶分子原地扭轉所產生的折射率變化,便能解釋穿透光多重振盪的現象。這在實驗上也觀察的到。
In this work, we are devoted to study the optical properties of nematic liquid crystal (LC) from the anisotropic birefringence behavior view. These include the shift of minimum attenuated total reflection angle, the mode splitting, and the nonlinear dynamic oscillation. The scenario of this work will be portrayed as follows.
Attenuated total reflection (ATR) is a prominent effect in examining the excitation of surface plasmons. The Kretcshmann-Raether configuration is implemented to generate the surface plasmon and to examine the change of the refractive index of LC by an applied field. A mixture of nematic and cholesteric liquid crystal is sandwiched between two glass substrates coated with conducting films. The minimum ATR angle changes less than 1o as the applied voltage increases to as large as 30Vpp, which is controvertible to the calculation based on field induced refractive index change. This fact suggests that the orientation of LC directors adjacent to the electrode surface is unaffected in response to the external field attributing to the strong anchoring effect. Extended Jones matrix simulation imposed with multi-layered structure of LC clearly adducing this fact.
Mode splitting is found with a He-Ne laser beam reflecting through a prism-coupled liquid-crystal slab waveguide applied with an electric field. Mode splitting yields stronger manifestation as the imposed voltage passes a critical level, yet it becomes diminished above a critical high voltage. If the voltage increases even higher, mode splitting would disappear, attributing to the turning up of almost all the directors of LC to the surface. Our multi-layered matrix simulation can satisfactorily account for this phenomenon by exploiting the property of the anisotropic optical birefringence of LC under applied voltages.
Relaxation oscillations of optical transmittance after the turn-off of the applied electric field of LCs are observed when the detected light transmits through a proper adjustment of the alignment of the polarizer and analyzer. Approximated dynamic simulation, which do not concern the back-flow effect and neglect the inertia terms, of the LC molecule at each layer yields relevant polarization interference of the transmitted light. This effect can satisfactorily portray the oscillation phenomenon. Optics with the extended Jones 4x4 matrix formalism, which is relevant in elucidating the optical properties of anisotropic media, is also implemented to solve this problem.
Contents
Table Captions
Figure Captions
Chapter
1. Variation of Attenuated Total Reflection Due to the Birefringence of Liquid Crystals by the Excitation of Surface Plasmons
1.1 Introduction to Liquid Crystal……………………………………………………..1
1.2 Surface Plasmon…………………………………………………………………...3
1.3 Theory……………………………………………………………………………..4
1.4 Experiments and Simulations…………………………………………………….12
1.5 Results and Discussion…………………………………………………………...14
1.6 Conclusion ……………………………………………………………………….15
Tables ………………………………………………………………………………...16
Figures………………………………………………………………………………..18
2. Mode Splitting in the Optical Slab Waveguide Filled with Nematic Liquid Crystal
2.1 Introduction………………………………………………………………………29
2.2 Liquid Crystal Embedded Optical Slab Wave Guides…………………………...31
2.3 Theory……………………………………………………………………………31
2.4 Experiments………………………………………………………………………38
2.5 Results and Discussion…………………………………………………………...38
2.6 Conclusion………………………………………………………………………..40
Table………………………………………………………………………………….41
Figures………………………………………………………………………………..42
3. Dynamic Response in Nematic Liquid Crystal
3.1 Introduction………………………………………………………………………59
3.2 Theory……………………………………………………………………………59
3.3 Experiments………………………………………………………………………63
3.4 Results and Discussion…………………………………………………………...64
3.5 Conclusion………………………………………………………………………..66
Figures………………………………………………………………………………..67
4. Conclusions and Future Development………………………………..…………82
References……………………...……………………………………………………83
Appendix 1A: Procedures of Using the Thermal Evaporator to Evaporate the Metallic Films………………………………………………………………….86
Appendix 1B: Sample Preparation of LC Cell and Commonly used alignments for nematic LC cell………………………………………………………88
Appendix 1C: The Simulation Program for Surface Plasmons………………………90
Appendix 1D: The Fitting Program for Thin Film Parameter Using Least Square Method……………………………………………………………….92
Appendix 2A: The Simulation Program for Wave Guides…………………………...95
Appendix 2B: The Tilt Angle of Liquid Crystal on the Boundary…………………100
Appendix 3A: The Program of Measuring LC Cell’s Response in a Computer Language of GWBASIC…………………………………………....104
Appendix 3B: The Program of simulating LC director’s tilt and twist angle………107
Appendix 3C: The Program of Simulating LC Cell’s Response in a Computer Language of Mathematica…………………………………………..109
[1] W. H. de Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980), Ch.1.
[2] Birendra Bahadur, Liquid Crystals-Applications and Uses vol.1 (World Scientific, Singapore, 1990), Ch.1.
[3] I. C. Khoo, and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Ch.1.
[4] 謝毓章, 液晶物理學 (簡體) (科學出版社, 北京市, 1998), Ch.1-Ch.3.
[5] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, London, 1995), Ch.1-Ch.3.
[6] 中田一郎、堀文一著;賴耿陽譯, 液晶製法與應用 (復漢出版社, 台南巿, 1982), Ch.1.
[7] P. G. de Gennes and J. Badoz, Les Objects Fragiles; 郭兆林、周念縈譯, 固、特、異的軟物質 (天下文化, 台北市, 1999), pp.45-56.
[8] H. Raether, Surface Plasmons on Smooth and Rough Surface and on Grating (Springer, New York, 1988), pp. 1-12, pp. 118-122.
[9] N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College Publishing, USA, 1976), pp. 16-19, pp. 27.
[10] P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Singapore, 1988), pp. 332-337.
[11] C. Kittel, Introduction to Solid State Physics (John Wiley &Sons, Singapore, 1991), Ch.10.
[12] C. C. Tzeng and J. T. Lue, Surface Sci. 216, 579 (1989).
[13] J. T. Lue and J. S. Sheng, Phys. Rev. B 47, 5469 (1993).
[14] P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Singapore, 1988), Ch.9.
[15] I. C. Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, Singapore, 1995) pp. 69.
[16] R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941); 31, 500 (1941).
[17] D. W. Berreman, J.Opt.Soc.Am 62, 4, 502 (1972).
[18] G. J. Sprokel, Mol. Cryst. Liq. Cryst. 68, 39 (1981).
[19] K. R. Welford, J. R. Sambles, Appl. Phys. Lett. 50 (14), 871 (1987).
[20] A. Lien, Appl. Phys. Lett. 57 (26), 2767 (1990).
[21] P. Yeh, J. Opt. Soc. Am. 72, 4, 507 (1982).
[22] P. Yeh, J. Opt. Soc. Am. A 10, 5, 966 (1993).
[23] P. Yeh, Surf. Sci. 96, 41 (1980).
[24] 呂助增, 雷射原理與應用, (聯經出版社, 台北市, 1987), Ch.15.
[25] P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Singapore, 1988), Ch.9, Ch.11.
[26] T. S. Lin, C. P. Pang and J. T. Lue, Appl. Phys. B 74, 401 (2002).
[27] P. R. Huang, T. S. Lin and J. T. Lue, J. Nonlinear Opt. Phys. Mater. 7 (2002).
[28] “Simulation using Mathematica” version 3.0 (Wolfram Research
Inc., 100 Trade Center Drive Champaign, IL 61820, USA, 1988).
[29] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals
(Clarendon Press, London, 1995), Ch.3, Ch.5.
[30] I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals
(World Scientific, Singapore, 1993). Ch.1, Ch.2.
[31] F. Leenhouts, J. Appl. Phys. 58 (6), 2180 (1985).
[32] D. W. Berreman, Appl. Phys. Lett. 25, 12 (1974).
[33] J. S. Sheng, J. T. Lue, Appl.Phys. A 55, 537 (1992).
[34] J. T. Lue, C. S. Chang, J. Nonlinear Opt. Phys. Mater. 8, 503 (1999).
[35] I.C. Khoo and S.T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), pp. 148-211.
[36] 謝毓章, 液晶物理學 (簡體) (科學出版社, 北京市, 1998), Ch.5-Ch.7.
[37] C. W. Oseen, Ark. Mat. Astron. Fys. 19, 1 (1925).
[38] F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).
[39] F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).
[40] J. L. Ericksen, Trans. Soc. Rheol. 5, 23 (1961).
[41] 陳立宜, The Influence of the Flow Effect on the Dynamics of Liquid-Crystal Displays, 交大光電所博士論文 (1999).
[42] F. Leenhouts, J. Appl. Phys. 58, 2180 (1985).
[43] C. Z. Van Doorn, and J. L. A. M. Heldens, Phys. Lett. 47A, 2, 135 (1974).
[44] C. Z. Van Doorn, J. Appl. Phys. 46, 9, 3738 (1975).
[45] D. W. Berreman, J. Appl. Phys. 46, 9, 3746 (1975).
[46] M. Schadt, and F. Muller, IEEE Trans. Electron Devices, vol. ED-25, 9, 1125 (1978).
[47] S. Chandrasekhar, Liquid Crystals, second edition (Cambridge University Press, New York, 1994), pp. 163.
[48] G. J. Sprokel, J. Electron. Mater. 9, 3, 651 (1980).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊