跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周崇斌
研究生(外文):Chung-Pin Chou
論文名稱:在氮化矽薄膜上成長均勻鈷量子點及其機制之研究
論文名稱(外文):Supported Cobalt Nanoclusters on an Insulating Si3N4 Film
指導教授:果尚志
指導教授(外文):S. Gwo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:87
中文關鍵詞:單晶氮化矽奈米原子團
外文關鍵詞:Silicon NitrideCobaltNanocluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們在室溫下成長鈷的奈米原子團(nanocluster)在單晶氮化矽介電薄膜上,鈷原子團會呈現單一分佈(monodispersed)的新奇現象,平均每個鈷原子團約具有三十個原子,並且所有原子團的大小分佈非常狹窄,可以明顯發現其大小有侷限的現象。實驗中,我們也發現沉積在氮化矽表面上的鈷原子團對於核聚集(coalescence)或熱分解都相當的穩定。此外,每個鈷原子團的平均大小不會隨著蒸鍍厚度的多寡而改變,這使得我們可以利用蒸鍍厚度來控制單位面積原子團密度之大小。另外,使用單晶氮化矽作為基板(substrate)的優點主要有兩個:第一、與使用半導體或金屬作表面來比較,介電質墊膜可以減低金屬原子團與基板間的化學鍵結及電子耦合;第二、幾乎沒有雜質(defect)的氮化矽表面可以保證金屬原子團不會受到表面雜質的影響。除了鈷原子之外,我們也做了金原子在氮化矽表面上的各項實驗。最後,我們也將談到如何利用量子效應來粗略解釋鈷的可控制原子團大小之特性,並與金的蒸鍍結果做一比較。

In this study, a novel phenomenon of forming monodispersed Co nanoparticles at room temperature on a single-crystal Si3N4 dielectric thin film is presented. Results of very narrow size distributions with an average size of ~30 Co atoms have been obtained. We have found that cobalt clusters deposited on Si3N4 are stable with respect to cluster agglomeration/coalescence and thermal decomposition. Also, we have confirmed that the average size of Co clusters is independent of the deposition time and insensitive to the magnitude of the deposition flux. Therefore, their areal density can be controlled by the deposition time. The motivation for using a single-crystal Si3N4 support is two-fold. First, the dielectric support reduces chemical intermixing and electronic coupling (Si3N4 is an excellent diffusion barrier with a bandgap energy of 4-5 eV) between metal clusters and the substrate compared with situations using semiconductor or metal surfaces. Second, the defect-free Si3N4 surface provides us a unique opportunity to study the formation of metal clusters without the influence of surface defects. Consequently, quantum effect can play an important role in the size control.

1.前言.......................................1
2.基本觀念
2-1 矽(111)-7×7表面介紹....................4
2-2 單晶氮化矽/矽-8×8表面介紹..............8
2-3 薄膜成長基本原理.......................13
3.實驗過程及儀器原理
3-1 掃描穿隧顯微鏡的物理基礎...............19
3-2 實驗裝置及方法.........................24
3-3 數據分析...............................32
4.實驗結果
4-1 鈷成長於單晶氮化矽的行為...............37
4-2 金成長於單晶氮化矽的行為...............46
4-3 金在矽(111)-7×7表面的結構..............52
4-4 鈷與金的大小分佈之比較.................60
4-5 鈷與金的熱穩定之比較...................63
5.結果討論及理論模型.........................67
6.參考文獻...................................86

1.M. L. Cohen and W. D. Knight, Physics Today, Dec. 42 (1990)
2.M. D. Upward, B. N. Cotier, P. Moriarty, and P. H. Beton, J. Vac. Sci. Tech. B 18(6), 2646 (2000)
3.St. Tosch and H. Neddermeyer, Phys. Rev. Lett. 61, 349 (1988)
4.D. A. Chen, M. C. Bartelt, S. M. Seutter, and K. F. McCarty, Surf. Sci. 464, L708 (2000)
5.J. Carrey, J.-L. Maurice, F. Petroff, and A. Vaures, Phys. Rev. Lett. 86, 4600 (2001)
6.H. Roder, E. Hahn, H. Brune, J.-P. Bucher, and K. Kern, Nature 386, Nov. 141 (1993)
7.H. Ahn, C.-L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, Phys. Rev. Lett. 86, 2818 (2001)
8.H.-J. Freund, M. Baumer, J. Libuda, H. Kuhlenbeck, T. Risse, K. Al-Shamery, and H. Hamann, Cryst. Res. Tech. 33, 7-8, 977 (1998)
9.W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)
10.G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983)
11.Takayanagi, K., Tanishiro, Y., Takahashi, S. and Takahashi, M. Surf. Sci. 164, 367 (1985)
12.Hamers, R. J., Ann. Rev. Phys. Chem. 40, 531 (1989)
13.A. Omeltchenko et al, Phys. Rev. Lett. 84, 318 (2000)
14.C. Meyer et al, Phys. Rev. Lett. 84, 322 (2000)
15.C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys. Rev. B 65, 045309 (2002)
16.G. Dufour, F. Rochet, H. Roulet, and F. Sirotti, Surf. Sci. 304, 33 (1994)
17.S.-Y. Ren and W. Y. Ching, Phys. Rev. B 23, 5454 (1981)
18.V. N. E. Robinson and J. L. Robins, Thin Solid Films 20, 155 (1974)
19.P. W. Atkins: Molecular Quantum Mechanics, Oxford University Press, Oxford, 41 (1983)
20.J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985)
21.G. Binnig and H. Rohrer, IBM J. Res. Develop. 30, 355 (1986)
22.J. A. Stroscio and W. J. Kaiser, Scanning Tunneling Microscopy (1993)
23.M. Ohring, The Materials Science of Thin Films (1992)
24.M.J.J. Jak, C. Konstapel, A. van Kreuningen, J. Verhoeven, R. van Gastel, J.W.M. Frenken, Surf. Sci. 494, 43-52 (2001)
25.P. A. Bennett, M. Copel, D. Cahill, J. Falta, and R. M. Tromp, Phys. Rev. Lett. 69, 1224 (1992)
26.P. A. Bennett, D. G. Cahill, and M. Copel, Phys. Rev. Lett. 73, 452 (1994)
27.T. Nguyen, H. L. Ho, and D. E. Kotecki, J. Mater. Res. 8, No. 9, 2354 (1993)
28.D. A. Chen, M. C. Bartelt, R. Q. Hwang, K. F. McCarty, Surf. Sci. 450, 78-97 (2000)
29.J. Carrey, J.-L. Maurice, F. Petroff, and A. Vaures, Phys. Rev. Lett. 86, 4600 (2001)
30.J. Carrey, J.-L. Maurice, F. Petroff, and A. Vaures, Surf. Sci. 164, 48-51 (2000)
31.G. Le Lay, Surf. Sci. 132, 169 (1983)
32.J. H. Huang and R. S. Williams, Phys. Rev. B 38, 4022 (1988)
33.Y. G. Ding, C. T. Chan and K. M. Ho, Surf. Sci. Lett. 275, L691-L696 (1992)
34.K. Oura, M. Katayama, F. Shoji and T. Hanawa, Phys. Rev. Lett. 55, 1486 (1985)
35.M. Chester and T. Gustafsson, Surf. Sci. 256, 135 (1991)
36.F. Salvan, H. Fuchs, A. Baratoff and G. Binnig, Surf. Sci. 162, 634-639 (1985)
37.J. D. O’Mahony, C. H. Patterson, J. F. McGilp, F. M. Leibsle, P. Weightman, and C. F. J. Flipse, Surf. Sci. Lett. 277, L57-L62 (1992)
38.Ch. Schamper, W. Moritz, H. Schulz, R. Feidenhans’l, and M. Nielsen, Phys. Rev. B 43, 12130 (1991)
39.A. A. Baski, J. Nogami, and C. F. Quate, Phys. Rev. B 41, 10247 (1990)
40.W. Greiner and J. A. Maruhn, Nuclear Models, Springer (1996)
41.W. Ekardt and Z. Penzar, Phys. Rev. B 38, No. 6, 4273 (1988)
42.K. Clemenger, Phys. Rev. B 32, No. 2, 1359 (1985)
43.J. Martins, R. Car, and J. Buttet, Surf. Sci. 106, 265-271 (1981)
44.S. K. Nayak, P. Jena, V. S. Stepanyuk, W. Hergert, and K. Wildberger, Phys. Rev. B 56, No. 11, 6952 (1997)
45.D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall (1995)
46.K.-N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science For Electrical Engineers and Materials Scientists, Macmillan Publishing Company (1992)
47.C. Kittel, Introduction to Solid State Physics, 7th ed. John Wiley & Sons, Inc. (1996)
48.W. A. de Heer, Rev. Mod. Phys. 65, No. 3, 611 (1993)
49.D. Bonatsos, D. Lenis, P. P. Raychev, and P. A. Terziev, Phys. Rev. A 65, 033203-1 (2002)
50.M. Y. Lai and Y. L. Wang, Phys. Rev. Lett. 81, 164 (1998)
51.M.-S. Ho, I.-S. Hwang, and T. T. Tsong, Phys. Rev. Lett. 84, 5792 (2000)
52.A. Zangwill, Physics at Surfaces, Cambridge University Press (1988)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文