跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉定坤
研究生(外文):Ding-Kun Liu
論文名稱:一氧化碳雷射之射頻光阻抗穩頻
論文名稱(外文):Radio Frequency Optogalvanic Effect for CO Laser Frequency Stabilization
指導教授:施宙聰施宙聰引用關係
指導教授(外文):Jow-Tsong Shy
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:43
中文關鍵詞:一氧化碳雷射光阻抗效應射頻穩頻蘭姆凹陷
外文關鍵詞:CO laseroptogalvanic effectradio frequencyfrequency stabilizationLamb dipOGE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
一氧化碳雷射在波長5~8 μm間有數百條的雷射躍遷譜線,並且已經應用在雷射光譜學、雷射磁共振以及痕量氣體的光聲測量等。在雷射的穩頻方面,最佳的方法為光阻抗蘭姆凹陷穩頻;為利用直流放電的方式將低氣壓的CO、N2、Xe混合氣之放電管置於雷射腔內,以取得光阻抗訊號。在本篇論文中,我們主要研究的是一氧化碳雷射的射頻光阻抗蘭姆凹陷穩頻的可行性。
我們利用6AQ5A真空管所組成之射頻震盪電路來研究一氧化碳之光阻抗效應。此射頻震盪電路可使一氧化碳的放電管在1 torr以下維持穩定的放電。放電管為氣體流動式,並將其置於雷射腔外。我們讓雷射光通過放電管,並利用截光器調制雷射光。由震盪電路的輸出訊號,利用鎖相放大器解調後可得到光阻抗訊號。雖然在一般的情況下無法觀察到光阻抗訊號,但在使用CO、N2及Ar的混合氣體時可觀察到光阻抗訊號。當放電管的氣體比例為CO:N2:Ar=1:1:60時可觀察到訊噪比最佳的光阻抗訊號。在總氣壓低於700 mtorr,雷射波長為5.3~5.6 μm的條件下,讓雷射光近似原路徑反射通過放電管,並藉由PZT改變雷射腔的長度,可觀察到由光阻抗效應所造成的蘭姆凹陷訊號。然後在PZT上疊加交流小振福的電壓訊號以調制雷射光的頻率,於是測得了蘭姆凹陷的一階微分訊號。由此訊號之訊噪比可預估其頻率穩定度約為4×10-9。

CO laser provides several hundreds lines in the wavelength range of 5 to 8 μm with moderate power. It has been applied to laser spectroscopy and photoacoustic detection of trace gases. In the part, the most accurate frequency stabilization methode is the optogalvanic Lamb-dip stabilization using a DC discharge of low pressure CO:N2:Xe mixture inside the laser cavity. In this thesis, we investigate the feasibility of RF optogalvanic Lamb-dip stabilization of CO laser.
A RF Colpitts oscillator with a pentode 6AQ5A is used for the study of the CO optogalvanic effect. The RF power of this oscillator is enough to sustain the CO discharge at pressure lower than 1 torr. By using this oscillator, the radio frequency optogalvanic signal is observed with the gas mixture CO:N2:Ar=1:1:60. Under the discharge pressure lower than 700 mtorr, the Doppler-free optogalvanic Lamb dip is detected at the vibrational levels ν=8 to 11 (5.3 to 5.6 μm). Using the first devirative of Lamb dip signal, the frequency stability better than 4 ×10-9 is expected based on the observed signal-to-noise ratio.

Chapter 1 Introduction……………………………………………………1
Chapter 2 Principle…………………………………………………………3
2.1 CO laser………………………………………………………………3
2.2 Optogalvanic Effect…………………………………………………7
2.3 Methods of Frequency Stabilization Using the Optogalvanic
Signal…………………………………………………………………9
2.4 CO Laser Frequency Stabilization Using the Optpgalvanic
Lamb Dip……………………………………………………………17
Chapter 3 Experimental Setups…………………………………………22
3.1 CO Laser……………………………………………………………22
3.2 RF Discharge………………………………………………………24
3.3 The OGS Detection System and the Frequency Stabilization
System………………………………………………………………25
Chapter 4 Results and Discussions……………………………………31
4.1 Observation of OGS…………………………………………………31
4.2 The Results of the Lamb Dip of OGS………………………………32
4.3 The Results of the First Derivative of OGS and Frequency
Stabilization…………………………………………………………33
Chapter 5 Conclusion………………………………………………………41
References…………………………………………………………………42

1.W. Urban, Infrared Phys. Technol. 36, 465 (1995).
2.J. M. Duh, Master Thesis, (National Tsing Hua University, R. O. C., 2001).
3.Y. C. Liang, Master Thesis, Study on the Optogalvanic Signal of CO, (National Tsing Hua University, R. O. C., 2001).
4.C. C. Tasi, Master Thesis, Radio Frequency Optogalvanic Effect for CO2 Laser Frequency Stabilization, (National Tsing Hua University, R. O. C., 1989).
5.J. D. Chern, Master Thesis, Frequency Stabilization of a Sequence Band CO2 Laser by Radio Frequency Optogalvanic Lamb Dip, (National Tsing Hua University, R. O. C., 1990).
6.D. R. Lyons, A. L. Schawlow, and G. Y. Yan, Opt. Commun, 38, 35 (1981).
7.F. M. Penning, Physica 8, 137 (1928).
8.B. Barbieri, N. Beverini, and A. Sasso, Rev. Mod. Phys. 62, 603 (1990).
9.C.E. Treanor, J.W. Rich, and R.G. Rehm, J. Chem. Phys. 48, 1798 (1968).
10.S. Rosenwaks, Gas flow and chemical laser, p.211 (Springer-Verlag 1987).
11.R. Farrenq, and C. Rossetti, Chem. Phys. B26, 73 (1981).
12.C. K. N. Patel, Phys. Rev. Lett. 12, 588 (1964).
13.O. Schulz, E. Plonjes, and W. Urban, Chem. Phys. Lett. 298, 385 (1998).
14.J. Pfaff, M. H. Begemann, and R. J. Saykally, Mol. Phys. 52, 541 (1984).
15.W. H. Richardson, L. Maleki, and E. Garmire, Phys. Rev. A 36, 5713 (1987).
16.M. Schneider, A. Hinz, A. Groh, K. M. Evenson, and W. Urban, Appl. Phys. B 44, 241 (1987).
17.J. W. Choi, Y. B. Chung, M. Strzelec, and M. Kopica, Rev. Sci. Instrum. 69, 4038 (1998).
18.C. C. Tsai, T. Lin, C. Y. Shieh, T. C. Yen, and J. T. Shy, Appl. Opt. 30, 3842 (1991).
19.W. Demtroder, Laser Spectroscopy 2nd edition, pp372-375 (Springer-Verlag, 1996).
20.D. E. Tolliver, Ph.D. Thesis, Observation of the Infrared Spectrum of the Helium Hydride Molecular Ion (University of Arizona 1980).
21.R. De Serio, G. A. Ruff and W. H. Wing, IEEE J. Quantum Electronics, QE-20, 2 (1984)
22.C. Freed and H. A. Haus, IEEE J. Quantum Electronics, QE-9, 219 (1973).
23.T. George, M. H. Wappelhorst, S. Saupe, M. Murtz, W. Urban and A. G. Maki, J. Molecular spectroscopy 167, 419 (1994).
24.S. Saupe, B. Meyer, M. H. Wappelhorst, W. Urban, and A. G. Maki, J. Molecular spectroscopy 179, 13 (1996).
25.J. S. Wells, D. A. Jennings, A Hinz, J. S. Murray, and A. G. Maki, J. Opt. Soc. Am. B, 857 (1985).
26.C. Freed and A. Javan, Appl. Phys. Lett. 17, 53 (1970)﹔S. Ya. Tochitsky, C. C. Chou and J. T. Shy, IEEE J. Quantum Electronics 31, 1223 (1995).
27.M. Schneider, K. M. Evenson, M. D. Vanek, D. A. Jennings, J. S. Wells, A. Stahn and W. Urban, J. Molecular Spectroscopy 135, 197 (1989)
28.C. Freed, IEEE J. Quantum Electronics. QE-4, p404, 1968; C. Freed, Appl. Phys. Lett. 18, 485 (1971).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top