跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖文競
研究生(外文):Wen-Ching Liao
論文名稱:共振腔振盪衰減吸收光譜的數據分析
論文名稱(外文):The Data Analysis of the Cavity Ringdown Spectroscopy
指導教授:施宙聰施宙聰引用關係
指導教授(外文):Jow-Tsong Shy
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:34
中文關鍵詞:共振腔振盪衰減高精微值腔體二氧化碳振盪衰減曲線公式指數衰減公式
外文關鍵詞:Cavity ringdown spectroscopyhigh finesse cavityCO2ringdown curve formulaexponential decay formula
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
  共振腔振盪衰減是一種測量弱吸收光譜極敏感、準確的方法。藉由測量通過充滿氣體之高精微值腔體雷射光的的振盪衰減時間,我們可以得到待測氣體的吸收係數。我們利用這種方量測二氧化碳在1064 nm附近的吸收光譜。
  在這篇論文裡,我們使用兩種方法擬合以求得振盪衰減時間。第一種方法是以理論振盪衰減曲線公式擬合,得到的c2值約為10-9。第二種方法是使用指數衰減公式擬合,得到的c2值約為10-8。第一種方法得到的振盪衰減時間比第二種方法約大了15%。造成此種差異的原因目前並不清楚。利用振盪衰減公式擬合的結果求得吸收中心為9394.00513 cm-1,不準度為2.4’10-4 cm-1。
  我們也研究了用理論的共振腔振盪衰減曲線作為實驗數據來作指數衰減公式擬合的有效條件。藉由捨去某個「切斷時間」之前的數據,我們可以使用指數衰減公式擬合來得到正確的振盪衰減時間。
未來我們將把更換腔體的反射鏡為更高反射率的以增加精微度,並利用新的腔體測量氘氫分子在1 mm附近的吸收光譜。

Cavity ringdown spectroscopy (CRDS) is a sensitive, accurate method to acquire weak optical absorption spectra. By measuring the ringdown time of light in a high finesse cavity filled with gas we can get the absorption coefficient of the gas. We use this method to measure the weak absorption spectrum of CO2 near 1064 nm.
In this thesis, we use two methods to fit the experimental ringdown curve to obtain the ringdown time. The first method is fitting the experimental ringdown curve with the theoretical ringdown curve formula (RCF), and the reduced c2 we get is about 10-9. The second method is with the exponential decay formula (EDF), and the reduced c2 we get is about 10-8.The ringdown time obtained by the first method is about 15% larger than the second method. The reason for this difference is not clear now. Using the fitting results of RCF the absorption center of CO2 (2003←0000) R(6) transition we obtained is 9394.00513 cm-1 with an uncertainty of 2.4’10-4 cm-1.
We also study the valid condition of the EDF fitting using the theoretical cavity ringdown curve as the experimental data. By neglecting the data before a "cut time", we can obtain the correct ringdown time using the EDF fitting.
In the future, we will replace the reflective mirrors of the cavity to higher reflection ones to increase the finesse, and use the new cavity to measure the overtone spectrum of HD near 1 mm.

CHAPTER 1 CAVITY RINGDOWN SPECTROSCOPY 1
1-1 CRDS Spectroscopy 1
1-2 The Methods of the CRDS 2
1-3 Overview of the Thesis 5
CHAPTER 2 PRINCIPLES of the CRDS 6
2-1 The Hermite-Gaussian Modes of a Cavity 6
2-1.1 The Optical field in the cavity 6
2-1.2 The Transverse Modes and the Longitudinal Modes 7
2-1.3 The TEM00 Mode 8
2-2 The Output Intensity of the Swept FP 8
2-3 Mode Matching 14
CHAPTER 3 EXPERIMENTAL SETUPS AND DATA ANALYSIS 17
3-1 The Setups of the CO2 Spectroscopy at 1064 nm 17
3-2 The Data Analysis of the CO2 Spectroscopy near 1064 nm 18
3-2.1 The Ringdown-curve Fit (RCF) 18
3-2.2 The Exponential Decay Fit (EDF) 19
CHAPTER 4 RESULTS and DISSCUSSIONS 20
4-1 The Results of Ringdow-curve Fitting 20
4-1.1 The Ringdown-curve Fit 20
4-1.2 The Exponential Decay Fit 21
4-2 Absorption Spectrum of CO2 at 1064 nm 22
4-3 The Best Cut Time of Fit 29
4-3.1 The Best Cut Time of Fit of the Model 29
4-3.2 The Best Cut Time of Fit of One Data 31
CHAPTER 5 CONCLUSION 34
REFERENCES 36

[1] Amnon Yariv, Optical Electronics in Modern Communications, New York: Oxford University Press, Inc., 1997.
[2] E. Inbar, A. Arie, “High-sensitivity CW Fabry-Pérot enhanced spectroscopy of CO2 and C2H2 using a 1064-nm Nd:YAG laser,” Appl. Phys. B 68 (1999) 99-105.
[3] Yabai He, Brian J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chemical Physics Letters 319 (2000) 131-137.
[4] Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of photonics, John Wiley & Sons, Inc., 1991.
[5] Jérôme Poirson, Fabien Bretenaker, Marc Vallet, and Albert Le Floch, “Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of hegh finesses,” J. Opt. Soc. Am. B 14 (1997) 2811-2817.
[6] Ziyuan Li, G. E. Stedman, and H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Pérot interferometer,” Optics Communications 100 (1993) 240-246.
[7] Anthony E. Siegman, Lasers, University Science Books, 1986.
[8] 郭明禎, “以共振腔振盪衰減測二氧化碳吸收光譜,” 清華大學碩士論文 (2001).
[9] R. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Thth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Canny-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, Appl. Opt. 26 (1987) 4058.
[10] P. Fritschel and Rainer Weiss, “Frequency match of Nd:YAG laser at 1.064 mm with a line in CO2,” Appl. Opt. Vol. 31, No. 12, (1992) 1910.
[11] E. Inbar, A. Arie, Appl. Phys. B. 68 (1999) 99-105.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top