|
1. R. D. Terry, R. Katzman, and K. L. Bick, Alzheimer''s Disease, Raven Press, N.Y., 1994. 2. L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine, M. Vaidyanathan, L. O. Hall, R. W. Thatcher and M. L. Silbiger, “MRI segmentation: methods and applications,” Magnetic Resonance Imaging, vol. 13, 343-368, 1995. 3. C. L. Partain, Magnetic Resonance Imaging, Saunders, Philadelphia, 1988. 4. C. Westbrook and C. Kaut, MRI in Practice, Blackwell Scientific Publications, Boston, 1993. 5. A. F. Goldszal, C. Davatzikos, D. L. Pham, M. X. H. Yan, R. N. Bryan, and S. M. Resnick, “An image processing system for qualitative and quantitative volumetric analysis of brain images,” J. Comput. Assist. Tomogr., vol. 22, 827—837, 1998. 6. M. E. Brummer, “Optimized intensity thresholds for volumetric analysis of magnetic resonance imaging data,” Proceedings SPIE, vol. 1808:299-310; 1992. 7. A. Waks and O. J. Tretiak, “Recognition of regions in brain sections,” Comput. Med. Imaging Graph., vol. 14, 341-352, 1990. 8. N. S. Lyer, A. kandel, and M. Schneider, “Feature-based fuzzy classification for interpretation of mammograms,” Fuzzy Sets and Systems, vol. 114, 271-280, 2000. 9. K. Hirota and W. Pedrycz, “Fuzzy computing for data mining,” Proceedings of IEEE, vol. 87, 1575-1600, 1999. 10. M.C. Clark, L.O. Hall, D.B. Goldgof, L.P. Clarke, R.P. Velthuizen, and M.S. Silbiger, “MRI segmentation using fuzzy clustering techniques,” IEEE Engineering in Medicine and Biology, vol. 13, 730 —742, 1994. 11. M. N. Ahmed, S. M. Yamany, N. A. Mohamed, A. A. Farag, and T. Moriarty, “Bias field estimation and adaptive segmentation of MRI data using modified fuzzy c-means algorithm,” Proc. IEEE Int. Conf. Computer Vision and Pattern Recogn., 250—255, 1999. 12. D. L. Pham and J. L. Prince, “Adaptive fuzzy segmentation of magnetic resonance images,” IEEE Trans. Med. Imag., vol. 18, 737—752, 1999. 13. M. E. Brandt, T. P. Bohan, L. A. Kramer, and J. M. Fletcher, “Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images,” Comput. Med. Imag. Graph., vol. 18, 25—34, 1994. 14. J. Bezdek, L. Hall, and L. Clarke, “Review of MR image segmentation using pattern recognition,” Med. Phys., vol. 20, 1033—1948, 1993. 15. M. S. Yang, Y. J. Hu, K. C. R. Lin, and C. C. L. Lin, “Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms,” Magnetic Resonance Imaging, vol. 20, 173-179, 2002. 16. M. L. Comer and E. J. Delp, “Segmentation of textured images using a multiresolution Gaussian autoregressive model,” IEEE Trans. Imag. Processing, vol. 8, 408-420, 1999. 17. C. G. Looney, Pattern Recognition using Neural Network: Theory and Algorithms for Engineers and Scientists, Oxford, New York, 1996. 18. A. Rosenfeld, Multiresolution Image Processing and Analysis, Springer-Verlag, New York, 1984. 19. J. Bezdek, Fuzzy Mathematics in Pattern Classification, UMI, Ann Arbor, 1973. 20. M. P. Windham, “Cluster validity for the fuzzy c-means clustering algorithm,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 4, 357-363, 1982. 21. P. Chaichanavong, Pyramid Coder with Nonlinear Prediction﹙http://www-ise.standford.edu/class/ee368b/projects/panu/index.html﹚. 22. 黃國源, 類神經網路與圖型識別, 維科, 台北市, 2000. 23. M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Trans. Med. Imag., vol. 21, 193-199, 2002. 24. P. J. Whitehouse, K. Maurer, and J. F. Ballenger, Concepts of Alzheimer Disease, Johns Hopkins University Press, Baltimore, 2000.
|