跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳琡方
研究生(外文):Chu-Fang Chen
論文名稱:熱擴散矽晶圓中微量過渡元素之縱深濃度分佈分析
論文名稱(外文):Depth Profiling Analysis of Trace Transition Metals in Thermally Diffused Silicon Wafer
指導教授:楊末雄楊末雄引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:95
中文關鍵詞:擴散矽晶圓縱深濃度分佈分析
相關次數:
  • 被引用被引用:1
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體產品的品質,基本上是建立在良好的製程品保系統上。隨著半導體製程的複雜化與微小化趨勢,使得元件產品對金屬污染之容忍度相對的變小。再者,由於銅製程技術的發展,亦衍生表面銅污染向晶圓內部擴散,可能造成對元件電性損傷的問題。因此,為配合半導體科技的發展,分析化學不僅需要發展材料的表面及整體的分析技術,亦需開發污染物在材料中的濃度分佈分析的方法。基於上述的理由,本研究發展一種利用陽極氧化逐次剝蝕矽晶圓薄層,再配合ICP-MS測定的技術,來分析矽晶圓中金屬元素的縱深濃度分佈。
首先發展定電流陽極氧化的實驗技術,探求電流密度和電解時間的最適化條件,以在矽晶圓表面生成厚度均勻之氧化層。結果顯示,以0.08 M硝酸為電解液,電流密度為1.38 mA/cm2及電解時間三十分鐘的條件下,可得到厚度約為700Å的氧化層。其次探討MCN-ICP-MS系統之最適化操作條件。為避免氧化層溶解液中所含的矽及氫氟酸基質可能對微量元素測定造成影響,研究中以基質匹配的方式進行各元素的測定。
最後整合陽極氧化生成氧化層及MCN-ICP-MS測定微量元素的最適化條件,以定電流陽極氧化重複多次氧化生成及溶解步驟,收集到不同層次的氧化層溶解液,再藉由MCN-ICP-MS進行元素(Cr, Co, Ni, Cu及Zn)的測定。本研究所建立之縱深分析技術,所求得各元素在晶圓中的濃度分佈趨勢,與二次離子質譜儀(SIMS)所得的結果頗為一致,顯見方法的可行性。
為進一部探討晶圓表面污染物在高溫製程中之擴散行為,本研究製備受污染的模擬晶圓樣品,依製程中相同的熱擴散處理程序進行樣品的加熱處理,再依所建立陽極氧化配合感應耦合電漿質譜儀之分析技術進行分析。研究中引用固定雜質之擴散(Constant-total-dopant diffusion)模式對所得的結果進行討論。
The electrical properties of semiconductor devices are influenced not only by the total concentration but also by the spatial distribution of impurities in/on the bulk material. Diffusion of impurity atoms will occur whenever there is a concentration gradient and the temperature is high enough to drive-in. Very high diffusion coefficients of transition metals at high processing temperatures can result in fast contamination of large wafer areas even from point sources. In order to understand the diffusion behavior of different metals in silicon upon thermal processing, it is highly required to develop analytical techniques to achieve depth profiling of impurity atoms in wafer.
A method consisted of anodic oxidation followed by inductively coupled plasma mass spectrometry (ICP-MS) determination was established. The silicon wafers (6 inch p type)were anodically oxidized at a constant current density of 1.38mA/cm2 and electrolysis time of 30 minutes in 0.08 M HNO3 as electrolyte at room temperature. After anodic oxidation, the oxide layer so obtained was subsequently dissolved with 1% HF+3% H2O2, and the resulted solution was subjected to ICP-MS for the determination of analyte concentration. Successively repeating the process of layer formation and dissolution steps followed by elemental determination, the concentrations of analyte elements (Cr, Co, Ni, Cu, and Zn) in respective layers were obtained.
From the experimental result on a thermally polluted silicon wafer under the heating condition at 800℃ for 5h, it indicated that a general trend showing exponentially decreasing concentration with increasing depth for the respective elements tested is found, in good agreement with that obtained by secondary ion mass spectrometry. From the reasonably good performance both in precision and accuracy as well as the low detection limits (4.0E+16 atoms cm-3) achievable for the tested elements, it may conclude that the established system combining anodic oxidation with MCN-ICP-MS can be an effectively used for the determination of concentration gradient of trace metals in silicon wafer.
In order to understand the diffusion behavior of metals on silicon surface upon thermal processing, metal polluted wafers were prepared and subsequently heated in the thermal furnace. The wafers so obtained were analyzed by the established system. Based on the obtained data, the diffusion coefficients of transition metals in silicon wafer were calculated with the constant impurity diffusion mode and the results were discussed.
目錄
摘要………………………………………………………………………Ι
謝誌………………………………………………………………………Ⅳ
目錄………………………………………………………………………Ⅴ
表目錄……………………………………………………………………Ⅷ
圖目錄……………………………………………………………………Ⅸ
第一章 前言…………………………………………………………1
1.1 半導體製程技術之發展…………………………………1
1.2 矽晶圓中微量金屬雜質元素分析之重要性……………2
1.3 矽晶圓中微量金屬雜質元素之分析方法………………5
1.4 矽晶圓表面氧化層之生成技術…………………………8
1.5 金屬元素在矽晶圓中之擴散行為………………………12
1.6 研究目的…………………………………………………16
第二章 儀器及分析原理……………………………………………18
2.1 感應耦合電漿質譜儀分析法(ICP-MS)…………………18
2.1.1 樣品導入系統………………………………………….………18
2.1.2 感應耦合電漿離子源…………………..…………….………21
2.1.3 離子萃取………….………………………….…….…………23
2.1.4 離子聚焦……….…………………………….………….……23
2.1.5 四極式質量分析器……………. …………………….………23
2.1.6 離子偵測….……………………………………………………24
2.1.7 感應耦合電漿質譜儀之分析特性與限制…………….……..25
2.2 感應耦合電漿原子發射光譜儀(ICP-OES)…….………27
2.2.1 光學偵測系統…………………………………………….……27
2.2.2 直線排列陣列電荷耦合偵測器……………………….……29
2.2.3 同時式感應耦合電漿原子發射光譜儀之特性………………30.
2.3 定電流陽極氧化(Constant Current Anodic Oxidation)..……30
第三章 實驗部份……………………………………………………32
3.1 定電流陽極氧化前處理技術………………………………32
3.1.1 儀器裝置….………………………………………………..….32
3.1.2 實驗環境…..………………………………………………..…32
3.1.3 實驗試劑、用水及樣品……………………………………….33
3.1.4 容器清洗…..………………………………………………..…33
3.1.5 實驗試劑之配製………………………………………………34
3.1.6 定電流陽極氧化技術之實驗流程建立……………………..34
3.2 MCN-ICP-MS分析系統之建立……………………………36
3.2.1 儀器裝置………………………………………………………36
3.2.2 儀器測定之步驟…………………………………………….…37
3.3 熱擴散污染矽晶圓之製作…………………….…………39
3.4 以MCN-ICP-MS進行矽晶圓中微量金屬元素之縱向濃度分佈分析……...….………………………………….…………………...40
第四章 結果與討論………………………………………………………42
4.1 建立定電流陽極氧化之技術……………………………………42
4.1.1 污染控制………………………………………………………42
4.1.2 矽晶圓表面氧化矽層生成之最適化條件探討………………44
4.2 利用MCN-ICP-MS進行矽晶圓中微量金屬元素之分析…..…48
4.2.1 儀器最適化操作條件之探討…………………………………48
4.2.2 干擾效應之探討……………………………………………....50
4.3 以定電流陽極氧化配合MCN-ICP-MS進行縱向濃度分佈分析之效能評估……………………………………………………....…56
4.4 熱擴散污染矽晶圓中金屬元素之縱向濃度分佈分析……58
4.5 污染矽晶圓中微量金屬元素之擴散行為之討論…………65
第五章 結論………………………………………………………….69
第六章 參考文獻……………………………………………………..71
第六章 參考文獻
1.H. Xiao著, 羅正忠和張鼎張譯, 半導體製程技術導論, 民國91年1月
2.Semiconductor Industry Association, International technology roadmap for semiconductors, 1999 ed., http://www.sematach.org
3.C. Y. Chang and S. W. Sze, in LUSI Technology, McGraw-Hill, New York, 1996
4.L. Fabry, S. Pahlke, L. Kotz and G. Tolg, Fresenius J. Anal. Chem., 1994, 349, 260-271
5.A. A. Istratov, H. Hieslmair, and E. R Weber, Appl. Phys. A, 2000, 70, 489
6.J. P. Joly, Microelectron. Eng., 1998, 40, 285
7.M. L. Polignano, F. Cazzarniga, A. Sabbadini, F. Zanderigo, and F. Priolo, Materials Science in semiconductor processing, 1998, 1, 119
8.E. P. B urte and W. Aderhold, Solid-State Electronics, 1997, 41, 1021-1025
9.M. B. Shabani, T. Yoshimi, and H. Abe, J. Electrochem. Soc., 1996, 143, 2025
10.E. R. Weber, Appl. Phys. A, 1983, 30, 1
11.A. A. Istratov, and E. R Weber, Appl. Phys. A, 1998, 66, 123
12.H. Kitagawa, Solid State Phenomena, 2000, 71, 51-72
13.張俊彥主編,積體電路製程及設備技術手冊,經濟部技術處,民國86年7月
14.S. H. Tan, Nucl. Instr. and Meth. in Phys. Res. B, 1995, 99, 458
15.J. Fucsko, S. S. Tan, and M. K. Balazs, J. Electrochem. Soc., 1993, 140, 1105
16.魏文晴,ICP-MS在半導體材料分析的應用. 科儀新知,民國八十七年,105期,39頁
17.C. R. Lan, M. H. Yang, Silicon Materials Research Program Monograph Series, 1986, 1, 53
18.A. H. M. Kamal, S.Nomura, and T. Endoh, J. Electrochem. Soc., 1994, 141, 2227
19.G. Mende, H. Flietner, and M. Deutscher, J. Electrochem. Soc., 1993, 140, 188
20.M. Horn, Fresenius J. Anal. Chem., 1999, 364, 385
21.S. K. Ghandhi, in VLSI Fabrication Principles, Wiley, New York, 1994
22.S. M. Sze, in Semiconductor Devices, Physics and Technology, Wiley, New York, 1985
23.莊達人, VLSI製造技術, 高立圖書有限公司, 第九章, 1990
24.M. Zief and J. W. Mitchell, John Wiley and Sons, New York (1976)
25.M. Grecea, C. Rotarn, N. Nastase, and G. Cracium, J. Molecular Structure, 1999, 480-481, 607-610
26.J. A. Bardwell, N. Praper, and P. Schmuki, J. Appl. Phys., 1996, 79, 8761-8769
27.M. Yuga, M. Ohyama, and M. Takeuchi, Electrochem., 2000, 68, 575-581
28.M. Seo, K.Fushimi, H. Takahashi, and K. Aotsuka, J. Electroanal. Chem., 1994, 368 , 257-264
29.P. F. Schmidt and W. Michel, J. Electrochem. Soc., 1957, 104, 230-236
30.黎致成,發展陽極氧化配合感應耦合電漿質譜儀分析法探討矽晶圓中金屬不純物之濃度縱深分佈. 國立清華大學碩士論文,民國九十年,第頁
31.P. Lanza and P. L. Buldini, Anal Chim Acta , 1979, 104, 139-144
32.M. J. Powell, E. S. K. Quan, D. W. Boomer, and D. R. Wiederin, Anal. Chem., 1992, 64, 2253
33.D. R. Wiederin and R. S. Houk, Appl. Spectrosc., 1991, 45, 1408
34.A. Krushevska, S. Tan, M. Passer, and X.R.Liu, J. Anal. At. Spectrom., 2000, 15, 1211-1216
35.J. D. Plummer, M. Deal, and P. B. Griffin, in Silicon VLSI Technology, Prentice Hall, 2000
36.R. Klockenkamper, Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54, 1385-1392
37.M. L. Polignano, E. Bellandi, D. Lodi, F. Pipia, A. Sabbadini, F. Zanderigo, G. Queirolo, and F. Priolo, Mater. Sci. Eng. B, 1998, 55, 21
38.T. Ohmi, T.Imaoka, I. Sugiyama and T. Kezuka, J. Electrochem. Soc., 1992, 139, 3317-3335
39.T. Ohmi, T.Imaoka, I. T. Kezuka, J. Takano, and M. Kogure, J. Electrochem. Soc., 1993, 140, 811-817
40.Wang, M.-Y., Ko, F.-H., Wang, T.-K., Yang, C.-C., and Huang, T.-Y., J. Electrochem. Soc., 1999, 146, 3455-3460
41.P. W. Mertens, T. Bearda, M. Houssa, I. M. Loewenstein, I. Cornelissen, S. D. Gendt, K. Kenis, I. Teerlinck, R. Vos, M. Meuris, and M. M. Heyns, Microelectron. Eng., 1999, 48, 199-206
42.D. Chopra, I. I. Suni and A. A. Busnaina, J. Electrochem. Soc., 1998, 145, L60
43.M. Hourai, T. Naridomi, Y. Oka, K. Murakami, S. Sumita, N. Fujino and T. Shiraiwa, Jpn. J. Appl. Phys., 1988, 27, L2361
44.A. Ohsawa, K. Honda and N. Toyokura, J. Electrochem. Soc., 1984, 131, 2964
45.Wang, T.-K., Wang, M.-Y., Ko, F.-H., Tseng, C.-L., Applied radiation and isotopes, 2001, 54, 811-820
46.R. Holzl, L. Fabry, K. J. Range, Appl. Phys. A, 74, 35-39
47.U. Gosele and T. Y. Tan, 1992, 83, 186-206
48.V. P. Boldyrev, I. I. Pokrovskii, S. G. Romanovskaya, A. V. Tkach, and I. E. Shimanovich, Sov. Phys. Semicond., 1977, 11, 709
49.M. K. Bakhadyrkhanov, B. I. Boltaks, and G. S. Kulikov, Sov. Phys.-solid state, 1969, 12, 144
50.M. K. Bakhadyrkhanov, B. I. Boltaks, and G. S. Kulikov, Sov. Phys.-solid state, 1972, 14, 1441
51.E. M. Pell, Phys. Rev., 1960, 119, 1222
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top