跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮文昇
研究生(外文):Wen-Sen Feng
論文名稱:鼻咽癌強度調控放射治療假體劑量治療計畫驗證
論文名稱(外文):Phantom Dose Verification for Intensity Modulated Radiotherapy for Nasopharyngeal Cancer
指導教授:董傳中董傳中引用關係
指導教授(外文):Chuan-Jong Tung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:強度調控放射治療鼻咽癌多葉準直儀假體劑量驗證游離腔金屬氧化半導體場效電晶體X光底片治療計畫
外文關鍵詞:intensity modulated radiotherapy(IMRT)Nasopharyngeal Cancermultileaf collimator (MLC)phantom dose verificationion chamber(M(metal oxide semiconductor field effect transistorOSFET)X filmTreatment plan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:550
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
IMRT 3D QA假體劑量驗證是將劑量計置於假體內空腔,在進行放射治療之前,藉由實際測量假體接收劑量來驗證治療計畫計算劑量,是IMRT放射治療品質管制之有效利器,因此許多報告都鼓勵以多種假體劑量度量,來更加確認IMRT放射治療劑量。假體劑量驗證最常使用的劑量計為游離腔、熱發光劑量計(thermoluminescence dosimeters, TLD)與X光底片,本實驗選擇游離腔、MOSFET劑量計與X光底片為度量工具,提供這3種劑量計在臨床使用上之校正經驗,並在實際驗證劑量之前,考慮可能影響假體劑量計讀值之各種參數,如照野均勻性、測量深度與假體材質等,一一在假體上量測,並在假體劑量驗證時予以修正。
選擇頭頸部治療之鼻咽癌病患,在進行劑量驗證之前時,將先IMRT 3D QA假體進行電腦斷層影像掃描,將所取得的影像,與原先病人的影像做置換,經過電腦重算劑量後,取得該待測驗證點之劑量值。然而假體材質與量測深度,並非當初校正治療機器時之位置與材質,故假體中劑量的換算上仍須經過校正。參考美國醫學物理師協會(American Association of Physicists in Medicine , AAPM)所發表之Task Group 21”光子在假體中劑量測定流程”,直接用實驗的方式將假體材質與深度誤差予以校正。
以游離腔劑量計與MOSFET劑量計分別量測了5個照野,分別屬於同一個病患。以游離腔劑量計度量的結果,有1照野的腫瘤劑量誤差大於2%的處方劑量,所有照野的劑量誤差則有-3.92%;以MOSFET劑量計量測假體劑量,結果有1照野的劑量大於3%的治療計畫劑量,而所有之劑量誤差都少於5%。
檢討整個治療流程,發現除了假體位置的差異外,系統誤差(systematic error)可能來自於假體不均質(inhomogeneity)與假體厚度之影響。除此之外,某些射束劑量計度量之結果誤差略比電腦計算劑量大,一一分析後,發現除了劑量計本身之不穩定外,劑量計之誤差亦可能來自於,劑量驗證點落在低劑量區域,其讀值將有明顯差異,因此也造成IMRT治療計畫在假體驗證上之不確定性。
經由本實驗可建立一套包括校正劑量計、修正假體條件與實際劑量測定之完整IMRT劑量驗證方式,經由誤差分析瞭解驗證流程中可能發生誤差之程序,在進行劑量驗證工作時應特別注意,以避免劑量誤差來達到品質保證之目的。

目錄
摘要……………………………………………………………………..i
誌謝……………………………………………………………………iii
目錄……………………………………………………………………v
圖目錄…………………………………………………………………viii
表目錄…………………………………………………………………x
第一章 前言…………………………………………………………1
第二章 鼻咽癌與放射治療…………………………………………4
第一節 鼻咽部位置解剖構造簡述…………………..…………4
第二節 鼻咽癌的成因…………………………..……….…5
第三節 鼻咽癌的症狀……………………………….……..7
第四節 鼻咽癌的診斷…………………………………..….8
第五節 鼻咽癌的治療……………………………………..8
第六節 治療期間……………………………………………9
第七節 治療後的料理………………………………………10
第八節 預後………………………………………………..11
第九節 高危險因子及預防………………………………..12
第三章 實驗器材……………………………………………………13
第一節 驗證假體(Verification Phantom)………………………13
第二節 Farmer游離腔…………………………………….……15
一、 游離腔度量原理………………..…………....………15
二、 Farmer游離腔實驗規格……….…………………….19
第三節 MOSFET劑量計…………………………………….22
一、 MOSFET的原理………………………………...…....24
二、 MOSFET的基本特性………………...………..….24
三、 MOSFET劑量計實驗規格………………………..26
第四節 X光底片劑量計………………………………….27
一、 片子的基底部分……..……………..………..…27
二、 乳膠……………………..………………………..28
三、 膠質………………………………………………29
四、 鹵化銀…………………………………………..29
五、 潛影………………………………………………31
六、 與X光產生的反應……………………………..32
七、 表面的保護層……………………………………34
八、 底片的沖洗………………………………………34
(1) 顯影…………………..…………………….34
(2) 回復………………………………………….37
(3) 定影………………………………………….40
(4) 清洗………………………………………….41
九、 X光片實驗規格………………………………….41
第四章 實驗方法…………………………………………………42
第一節 游離腔劑量計校正…………………………….……..42
一、 修正參數……………………………………………..42
(1) 照野大小………………………………………...42
(2) 假體材質與深度對偵檢器影響…………………44
第二節 MOSFET劑量計度量…………………………….…..45
一、 劑量反應線性關係………………….……………….45
二、 劑量率變化…………………………………….…….46
三、 入射角度依存性……………………………………..47
四、 再現性………………………………………………..48
五、 能量依存性…………………………………………..48
六、 穩定性………………………………………………..49
第三節 X光底片度量……………………………….…...…50
第四節 治療計畫驗證……………………………………51
第五節 治療計畫誤差分析………………………………53
第五章 結果與討論…………………………………………………54
第一節 游離腔劑量驗證結果………………………..…….…..54
第二節 MOSFET劑量計驗證結果………………….…………55
第三節 X光底片的劑量驗證結果……………………………56
第四節 誤差分析與討論……………………………….……..58
一、 假體組成不均質之影響………………………….….59
二、 照野不均勻的誤差…………………………………..60
三、 MOSFET劑量計的誤差…………………………...61
四、 X光底片的誤差……………………………………..62
第六章 結論…………………………………………………………63
參考文獻………………………………………………………………65

1.洪瑞隆醫師個人首頁,鼻咽癌講座。 來源網址: http://www.fcf.org.tw/disease/nasopharngeal.htm
2.香港醫院管理局首頁,健康及各類疾病之常識。
來源網址: http://www.ha.org.hk/org/hkacs/cancer/naso.htm
3.王博民醫師講解首頁,鼻咽癌常見問題來源網址:http://tis.mc.ntu.edu.tw/npcfaq.htm
4.Nicholas T. Measurement and Detection of radiation. Hemisphere Publishing Corporation. New York:1983.
5. Knoll GF. Radiation detection and measurement. Wiley, New York:1989.
6. Khan FM. The physics of radiation therapy. Williams & Wilkins. Baltimore:1994.
7. Task Group 21, Radiation Therapy Committee, AAPM: Schulz RJ, Almond PR, Cunningham JR, et al. A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys 1983;10:741-771.
8. Sze, S. M.: ”Semiconductor Devices, Physics. and Technology”, John Wiley and Sons, 1985.
9. Soubra, M.,Cygler, J, and Mackay, G.F., “Evaluation of a Dual Metal Oxide-Silicon Semiconductor Field Effect Transistor Detector as a Radiation Dosimeter”, Medical Physics. 21(4) April 1994.
10. Thomson I., Reece M.H., ”Semiconductor MOSFET Dosimetry”, Proceeding of Health Physics Society Annual Meeting(1983).
11. Oldham T.R. and McGarrrity J.M., “Comparison of 60Co Response and 10keV X-Ray Response in MOScapaacitorrs,” , IEEE Trans. Nucl. Sci. NS-30 4377(1983).
12. Tallon R.W., Ackermaan M,R, W.T. Kemp W.T., Owen O.H., and Saunders D.P., ”A Comparison Of Ionizing Radiation Damage in MOSFET’s from 60Co Gamma Rays, 0.5 To 22MeV Proton and 1 to 7 MeV Electronics”, IEEE Trans. Nucl. Sci. NS-32 4393(1985).
13. Ma, T.P., Dressendorfer, P.V., “Ionizing Radiation Effects in MOS Devices and Circuits”, 1st edition ,(Wiley New York, 1989).
14. Baines, H., and Bomback, E.S.: The Science of Photography, 2nd Ed . London, Fountain Press, 1967.
15. Fuchs A.W.: “Evolution of roentgen film. Am. J. Roentgenol., 75:30, 1956.
16. James, T.H., and Higgins, G.C.: Fundamentals of Photographic Theory. 2nd Ed New York, Morgan and Morgan, 1968.
17. Martin, F.C., and Fuchs A.W.: The historical evolution of roentgen-ray plates and film. Am. J. Roentgenol., 26:540, 1931.
18. Mees, C.E.K., and James, T.H.: The Theory of the Photographic Process. 3rd Ed. New York, Macmillaan, 1969.
19. Neblette, C.B.: Photography , Its Materials and Processes . 6th Ed. New York, Van Nostraand, 1962.
20.Warynen, R.E., Holland , R.S., and Trinkle, R.J.: Chemical Manufacturing Considerations and Constraints in Manufacturing Film, Chemicals and Processing. Proceedings of the Second Image Receptor Conference: Radiographic Film Processing, Washington, DC, March 31-April 2, 1977, pp. 89-96. Washington, DC, U.S. Government Printing Office, 1977, Stock No. 017-015-00134-2.
21. Wuelfing, P,: High stability developer for medical x-ray processing. SPIE Vol. 555 Medical Imaging and Instrumentation, 1985, p. 91.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊