跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴彥融
研究生(外文):Yen-Jung Lai
論文名稱:腐植酸與複合金屬在非均勻相中對四氯乙烯催化分解之探討
論文名稱(外文):The Influence of Humic acid and Metal Complexes on the Dechlorination of Tetrachloroethylene in Heterogeneous system
指導教授:董瑞安
指導教授(外文):Ruey-an Doong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:160
中文關鍵詞:四氯乙烯(PCE)脫氯反應腐植酸金屬離子氫原子
外文關鍵詞:tetrachloroethylene (PCE)dechlorinationhumic acidmetal ionsatomic hydrogen.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
三氯乙烯(TCE)和四氯乙烯(PCE)是普遍存在地下水環境中的有機氯化污染物,利用鐵元素進行滲透反應牆的非生物轉化則是目前氯化有機物相當受重視的新穎處理技術之一,但其在長期處理效率的評估上並無相關文獻提及,同時腐植酸與重金屬離子的影響目前也不清楚。因此本研究的目的在於整合催化劑和腐植酸的特性,並進一步探討環境中腐植酸與重金屬離子對零價鐵反應效率間的交互關係。研究結果指出,零價鐵添加銅、鈷、鎳和鈀等二價離子,有助於四氯乙烯的脫氯反應,在添加腐植酸的環境下,因為會與氯化有機物競爭金屬鐵表面的活性位址而降低其反應活性,甚至也因此影響催化劑的催化作用。相較於其他金屬,金屬鈀為較具活性的催化劑,因為它易催化金屬鐵還原水而產生具有強還原力的氫原子來幫助四氯乙烯分解,因此,在高濃度的腐植酸水溶液環境下,水溶液相的的腐植酸有助於轉換電子或氫原子從金屬表面到四氯乙烯的傾向,而突顯在反應速率上。從結果來看,在高濃度腐植酸添加以及鈀金屬(Pd)的環境下,四氯乙烯的速率步驟會因著催化劑鈀(Pd)的存在,由化學吸附轉變為氫化反應,進而加速零價鐵對四氯乙烯的脫氯速率,說明利用複合金屬移除氯化有機物將更具有可行性。
Chlorinated organic solvents, such as tetrachloroethene (PCE) and trichloroethylene (TCE) are common groundwater contaminants. The removal of chlorinated hydrocarbons by permeable iron barrier has received much attention. However, the long-term effectiveness of permeable iron barriers and the influence of humic acid and metal ions on dechlorination, frequently found compounds at contaminated sites, remain unclear. Therefore, the aim of this study was to understand the reduction of PCE by zero-valent iron in the presence of metal ions, such as Co(II), Cu(II), Ni(II) and Pd(II) and/or humic acid. Results showed that dechlorination rate of PCE could be enhanced by zero-valent iron (ZVI) amended with metal ions. Ethane and ethene were the major end products, showing that b-elimination is the major reaction pathway for PCE dechlorination. XPS results showed that divalent metal ions were reduced to zero-valent metals by ZVI. In the presence of humic acid, it was adsorbed on the surface of the iron particles. Due to this reason, the chemisorption of PCE to ZVI surface was inhibited because of the completion of PCE with humic acid for sorption sites resulting in inhibiting the surface reaction of degradation rate by ZVI. After equilibrium for 24 h between humic acid and ZVI, dechlorination efficiency and rate of PCE can be enhanced at elevated humic acid concentration by Pd/Fe. The aqueous humic acid acted as mediator to accelerate the electron/atomic hydrogen transfer from Fe0 to PCE. Consequently, the rate-limiting step of chlorinated ethylene might shift from the chemisorption (surface touching reaction) to atomic hydrogen reduction.
Content Index
Chapter 1. Introduction and motivation
1-1 Introduction………………………………………………………………………. 1
1-2 Motivation……………………………………………………………………….. 3
1-3 Objective…………………………………………………………………………. 5
Chapter 2. Background and theory
2-1 Physicochemical properties of chlorinated hydrocarbons………………………. 7
2-2 Chemistry of permeable reactive barrier for groundwater cleanup…………………………………………………………………………. 12
2-3 Chemical reduction mechanism………………………………………………… 13
2-3-1 Abiotic transformation by zero-valent metal for dechlorination…………… .13
2-3-2 Abiotic transformation by metallocoenzymes……………………………… 21
2-3-3 Abiotic transformation by humic metal complex………………………….. 32
2-4 The role of humic substance in the Fe0-H2O scheme………………………….. 34
2-5 Reaction mechanisms of chlorinate ethylene…………………………………… 39
2-6 Heterogeneous Catalyst………………………………………………………… 46
2-6-1 Principles…………………………………………………………………… 46
2-6-2 Mechanism of heterogeneous catalysis…………………………………….. 48
2-6-3 Deactivation of catalyst…………………………………………………… 49
Chapter 3 Research design and methodology
3-1 Reagents and materials………………………………………………………… 55
3-1-1 Chemicals………………………………………………………………… 55
3-1-2 Apparatus…………………………………………………………………. 55
3-2 Preparation of deoxygenated water…………………………………………….. 56
3-3 PCE dechlorination in homogeneous system…………………………………….. 57
3-3-1 Effect of metal ions…………………………………………………..….... 57
3-4 PCE dechlorination in the heterogeneous system……………………………… 59
3-4-1 Dechlorination by zero-valent iron at different pH values and amended with AQDS / bimetallic system……………………………………………….. 59
3-4-2 Effect of humic acid and Ni(II) and Pd(II) on PCE dechlorination……… 60
3-4-3 The types of the quinones for PCE dechlorination………………………. 61
3-5 Analytical Methods……………………………………………………………. 62
3-5-1 The measurement of the produced gas by pressure probe……………….. 62
3-5-2 Quantification of dissolved heavy metal ions……………………………. 63
3-5-3 Quantification of dissolved and sorbed Fe(II) / Fe(III)………………….. 63
3-5-4 Quantification humic acid in the heterogeneous system………………… 65
3-5-5 Quantification organic compounds on the zero-valent iron……………… 67
3-5-6 Observation of humic acid by Scanning Electron Microscopy (SEM)……………………………………………………………………. 67
3-5-7 Formation identified of metal ions (Ni(II)and Pd(II)) on the FeO………. 68
3-5-8 The measurement of the free radical in the heterogeneous system by Electron Paramagnetic Resonance Spectrometer (EPR)………………………… 69
3-5-9 Identification of solid particle in the homogeneous system……………… 70
3-5-10 The Mass balance of the PCE degradation………………………………. 71
3-5-11 Chlorinated hydrocarbons………………………………………………… 73
Chapter 4 Results and discussion
4-1 Dechlorination of PCE in homogeneous system………………………………. 75
4-2 Heterogeneous system…………………………………………………………. 80
4-2-1 Effect of pH on the reduction of PCE in Fe0—amended systems………….. 80
4-2-2 Effect of AQDS……………………………………………………………. 83
4-2-3 Reduction of PCE by Fe0 with metal ions………………………………… 87
4-2-4 Role of metal ions in dechlorination without humic acid………………… 90
4-3 Effect of humic acid on the reduction of PCE by bimetallic reductants……….. 97
4-3-1 Effect of humic aicd………………………………………………………... 97
4-3-2 Effect of Ni(II)…………………………………………………………….. 99
4-3-3 Effect of Pd(II)……………………………………………………………. 106
4-3-4 Change of humic acid and metal ion in dechlorination by Fe0…………… 115
4-4 Effect of quinone compounds on PCE dechlorination by Pd(II)/Fe0…………. 119
4-5 Effect of hydrogen……………………………………………………………. 137
4-6 The distribution of Products…………………………………………………... 140
Chapter 5 Conclusions……………………………………………………... 141
References……………………………………………………………..……. 143
Appendix I GC/MS/FID Analysis Distribution of the products in the degradation of PCE by Fe0/0.1 mM Pd(II)
Appendix II GC/MS/FID Analysis Distribution of the products in the degradation of PCE by Fe0/0.1mM Pd(II) + 50 mg/L Aldrich Humic acid
Appendix III GC/MS/FID Analysis Distribution of the products in the degradation of PCE by Ti(III) citrate (15mM)
Appendix IV EPR analysis
Appendix V XRD Analysis
Agrawal, A.; Tratnyek, P. G. (1996) Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 30, 153-160.
Alessi, D. S.; Li, Z. (2001) Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent Iron. Environ. Sci. Technol. 35, 3713-3717.
Allen-King, R. M.; Halket, R. M.; Burris, D. R. (1997) Reductive transformation and sorption of cis- and trans-1,2-dichloroethene in a metallic iron-water system. Environ. Toxicol. Chem. 16, 424-429.
Alvarez, P. J. J.; Vogel, T. M. (1995) Degradation of BETX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Wat. Sci. Tech. 31, 15-28.
Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A. (2000) Dechlorination of Carbon Tetrachloride by Fe(II) Associated with Goethite Environ. Sci. Technol. 34, 4606-4613.
Appleton, E. L. (1996) A nickel-iron wall against contaminated groundwater. Environ. Sci. Technol. 30, 536-539.
Arnold, W. A.; Roberts, A. L. (1998) Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environ. Sci. Technol. 32, 3017-3025.
Arnold, W. A.; Roberts, A. L. (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 794-1805.
Augustine, R. L. (1995) In heterogeneous catalysis for the synthetic chemist. Marcel Dekker, New York.
Balko, B. A.; Tratnyek, P. G. (1998) Photoeffects on the reduction of carbon tetrachloride by zero-valent iron. J. Phys. Chem. (B) 102, 1459-1465.
Bradley, P. M.; Chapelle, F. H.; Lovley, D. R. (1998) Humic acid as electron acceptors for anaerobic microbial oxidation of vinly chloride and dichloromethane. Appl. Environ. Microbiol. 64, 3102-3105.
Ballapragada, B. S.; Stensel, H. D.; Puhakka, J.A.; Ferguson, J. F. (1997) Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ. Sci. Technol. 31, 1728-1734.
Bond, G. C. (1987) Heterogeneous catalysis: priciples and applications, Oxford : Clarendon Press.
Burris, D. R.; Campbell, T. J.; Manoranjan, V. S. (1995) Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol. 29, 2850-2855.
Burris, D. R.; Delcomyn C. A.; Smith, M. H.; Roberts, L. A. (1996) Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems. Environ. Sci. Technol. 30, 3047-3052.
Buschmann, J.; Angst, W.; Schwarzenbach, R. P. (1999) Iron porphyrin and cysteine mediated reduction of ten polyhalogenated methanes in hologegeous aqueous solution: product analyses and mechanistic considerations. Environ. Sci. Technol. 33, 1015-1020.
Campbell, T. J.; Burris, D. R.; Roberts, A. L., ; Wells, J. R. (1997) Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system. Environ. Toxicol. Chem. 16, 625-630.
Cheng, S. F.; Wu, S. C. (1998) Enhancing chlorinated methanes degradation by modifying the Fe0 reduction system. Physical, Chemical, and Thermal Technologies: Proceedings of the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 18-21 May 1998, Monterey, CA, Wickramanayake, G. B., and R. E. Hinchee (Eds.), Battelle Press, Columbus, OH. 1, 299-304.
Cheng, S. F.; Wu, S. C. (2000) The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere. 41,163-1270.
Chen, Jiann-Long.; Al-Abed, S. R.; Ryan, J. A.; Li, Z. (2001) Effect of pH on dechlorination on trichloroethylene by zero-valent iron. J. Hazrard. Mat. B83, 243-254.
Cipollone, M. G.; Wolfe, N. L.; Hassan, S. M. (1995) Kinetic studies on the use of metallic iron to reduce organic compounds in water under environmental conditions. 209th National Meeting, American Chemical Society. Anaheim, CA. Preprint Extended Abstracts, Division of Environmental Chemistry, 35, 812-814.
Crist, R. H.; Martin, J. R.; Chonko, J. (1996) Uptake of metals on peat moss: an ion-exchange process. Environ. Sci. Technol. 30, 2456-2461.
Curtis, G. P.; Reinhard, M. (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfate and humic acid. Environ. Sci. Technol. 28, 2393-2401.
Doong, R. A.; Wu, S. C. (1992) the effect of oxidation-reduction potential on the biotransformations of chlorinated hydrocarbons. Wat. Sci. Technol. 26, 159-168.
Doong, R. A.; Wu, S.C. (1995) Enhanced biodegradation of carbon tetrachloride by the supplemental of substrate and mineral ions under anaerobic conditions. Water. Environ. Res. 67, 276-281.
Doong, R. A.; Wu, S. C.; Chen, T.S. (1996), Effect of Substrate Concentration on the Biotransformation of Carbon Tetrachloride and 1,1,1-trichloroethane under Anaerobic Condition. Wat. Res. 30, 577-.586.
Dunnivant, F. M.; Schwarzenbach, R. P. (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26, 2133-2141.
Farrell, J.; Kason, M.; Melitas, N.; Li, T. (2000) Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 34, 514-521.
Farrell, J.; Melitas, N.; Li, T. (2000) Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ. Sci. Technol. 34, 2549-2556.
Fennelly, J. P.; Roberts, A. L. (1998) Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ. Sci. Technol. 32, 1980-1988.
Gillham, R. W., O'Hannesin, S. F. (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water. 32, 958-967.
Gillham, R. W.; O’Hannesin, S. F.; Odziemkowski, M. S.; Garcia-Delgado, R. A.; Focht, R. M.; Matulewicz, W. H.; Rhodes, .J. E. (1997) Enhanced degradation of VOCs: Laboratory and pilot-scale field demonstration. 2nd International Containment Technology Conference, Florida State University, Tallahassee. St. Petersburg, FL. 858-863.
Gantzer, C. J.; Wackett, L. P. (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes, Environ. Sci. Technol. 25, 715-722.
Geiger, C. L.; Clausen, C. A.; Reinhart, D.; Ruiz, N.; Afiouni. G. (1996) Remediation of solvent contaminated groundwater using enhanced zero-valent metal technology. 211th ACS National Meeting, American Chemical Society. New Orleans, LA. Preprint Extended Abstracts, Division of Environmental Chemistry, 36, 17-18.
Hu, S. (1999) Reductive dechlorination of trichloroethylene by metallic iron: Effects of Iron Corrosion and Corrosion Inhibition. M.S. Thesis. New Mexico Institute of Mining and Technology, Socorro, NM.
Isalou, M.; Sleep, B. E.; Liss, S. N. (1998). Biodegradation of high concentration of tetrachloroethene in a continuous flow column systems. Environ. Sci. Technol. 32, 3579-3585.
Janssen, D. B.; Oppentocht, J. E.; Poelarends, G. J.; (2001) Microbial dehalogenation. Current Opinion in Biotechnol. 12, 254-258.
Johnson, T. L.; Scherer, M. M.; Tratnyek, P. G. (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 30, 2634-2640.
Johnson, T. L.; Fish, W.; Gorby, Y. A.; Tratnyek., P. G. (1998) Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface. J. Contam. Hydrol. 29, 379-398.
Kim, S.; Picardal, F. W. (1999) Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides. Environ. Toxicol. Chem. 18, 2142-2150.
Kriegman-King, M. R.; Reinhard, M. (1992) Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ. Sci. Technol. 28, 692-700.
Larson, R.R., Cervini-Silva, J., (2000) Dechlorination of substituted trichloromethanes by an iron(II) porphyrin. Environ. Toxicol. Chem. 19, 543-548.
Lewis, T.A.; Morra, M.J.; Brown, P. D. (1996) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium(III) reducing agents. Environ. Sci. Technol. 30, 292-300.
Li, T.; Farrell. J. (2000) Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 34, 173-179.
Li, T.; Farrell, J. (2001) Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reactions at iron surfaces. Environ. Sci. Technol. 35, 3560-3565.
Liang, L.; Korte, N.; Goodlaxson, J. D.; Clausen, J.; Fernando, Q.; Muftikian, R. (1997) Byproduct formation during the reduction of TCE by zero-valence iron and palladized iron. Ground Water Monitoring and Remediation. Winter. 122-127.
Lien, H.-L.; Zhang, W.-X. (1999) Transformation of chlorinated methanes by nanoscale iron particles. J. Environ. Eng. 125, 1042-1047.
Liu, Z.; Arnold, R. G.; Betterton, E. A.; Smotkin, E. (2001) Reductive dehalogenation of gas-phase chlorinated solvents using a modified fuel cell. Environ. Sci. Technol. 35, 4320-4326.
Lovley, D. R.; Coates, J. D.; Blunt-Harris, E. L.; Phillips, E. J. P.; Woodward, J. C. (1996) Humic substances as electron acceptors for microbial respiration. Nature, 382, 445-448.
Lovley, D. R.; Fraga, J. L.; Blunt-harris, E. L.; Hayes, L. A.; Phillips, E. J. P.; Coates, J. D. (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta. hydrochim. Hydrobial. 26, 152-157.
Lovley, D. R.; Fraga, J. L.; Coates, J. D.; Blunt-harris, E. L. (1999) Humic as electron donor for anaerobic respiration. Environ Microbiol. 1, 89-98.
Lowry, G. V.; Reinhard M.; (1999) Hydrodehalogenation of 1- to 3- carbon halogenated organic compounds in water using a Palladium catalyst and hydrogen gas. Environ. Sci. Technol. 33, 1905-1910.
Ma, H.; O’Loughlin, E. J.; Burris, D. R. (2001) Factors affecting humic-nickel complex mediated reduction of trichloroethene in homogeneous aqueous solution. Environ. Sci. Technol. 35, 717-724.
Mackenzie, P. D.; Horney, D. P.; Sivavec, T. M. (1999) Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mat. 68, 1-17.
Matheson, L. J.; Tratnyek, P. G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045-2053.
McNab, W. W. Jr.; Narasimhan, T. N. (1994) Degradation of chlorinated hydrocarbons and groundwater geochemistry: a field study. Environ. Sci. Technol. 28, 769-775.
McNab, W. W.; Jr., Ruiz, R.; Reinhard, M. (2000) In-situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: testing and operational experiences. Environ. Sci. Technol. 34, 149-153.
Nurmi, J.T.; Tratnyek, P. G. (2002) Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environ. Sci. Technol. 36, 617-624.
Muftikian, R.; Nebesny, K.; Fernando, Q.; Korte, N. (1996) X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminants. Environ. Sci. Technol. 30, 3593-3596.
Muftikian, R.; Fernando, Q.; and Korte, N. (1995) A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Wat Res. 29, 2434-2439.
Nurmi, J. T.; Tratnyek, P. G. (2002) Electrochemical properties of natural organic matter fractions of NOM, and model biogeochemical electron shuttles. Environ. Sci. Technol. 36, 617-624.
O’Loughlin, E. J. Burris, D. R., and Delcomyn, C. A., (1999) Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environ. Sci. Technol. 33, 1145-1147.
Orth, S., W., and Gillham, R. W., (1996) Dechlorination of trichlorethene in aqueous solution using Fe(0). Environ. Sci. Technol. 30, 66-71.
Perlinger, J. A.; Buschmann, J.; Angst, W.; Schwarzenbach, R. P. (1998) Iron porphyrin and mercaptojuglone mediated reduction of polyhalogenated methanes and ethanes in homogeneous aqueous solution. Environ. Sci. Technol. 32, 2431-2437.
Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P. (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ. Sci. Technol. 36, 1734-1741.
Perlinger, J. A.; kalluri, V. M.; Venkatapathy, R.; Angest, W. (2002) Addition of hydrogen sulfide to Juglone. Environ. Sci. Technol. 36, 2663-2669.
Patai S., and Rappoport. Z., (1988) Chemistry of the quinonoid compounds volume 2, part 2, John Wiley & Sons. 990-991.
Ruiz, N.; Seal, S.; and Reinhart, D. (2000) Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation. J. Hazard. mat. 10B, 107-117.
Roberts, A. L.; Totten, L. A.; Arnold, W. A.; Burris, D. R.; Campbell, T. J. (1996) Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Technol. 30, 2654-2659.
Sacre, J. A. (1997) Treatment walls: a status update. Ground-water Remediation Technologies Analysis Center, TP-97-02, Pittsburgh, PA. (Homepage: http://www.gwrtac.org.)
Scherer, M. M.; Balko, B. A.; Gallagher, D. A.; Tratnyek, P. G. (1998a) Correlation analysis of rate constants for dechlorination by zero-valent iron. Environ. Sci. Technol. 32, 3026-3033.
Scherer, M. M.; Balko, B. A.; Tratnyek, P. G. (1998b) The role of oxides in reduction reactions at the metal-water interface. Mineral-Water Interfacial Reactions: Kinetics and Mechanisms, Sparks, D. L., and T. J. Grundl (Eds.), American Chemical Society, Washington, DC. ACS Symp. Ser. 301-322.
Scherer, M. M.; Westall, J. C.; Tratnyek, P. G. (1999) The kinetics of nitro reduction by iron metal: A case of mixed control. 217th National Meeting, American Chemical Society. Anaheim, CA. Preprint Extended Abstracts, Division of Environmental Chemistry, 39, No. 1. 346-348.
Scherer, M. M.; Richter, S.; Valentine, R. L.; Alvarez, P. J. J. (2000) Chemistry and microbiology of reactive barriers for in situ groundwater cleanup. Critical Rev in Microbio. 26, 221-264.
Schreier, C. G.; and Reinhard. M. (1995) Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water. Chemosphere. 31, 3475-3487.
Scott, D. T.; McKnight, D. M.; Blunt-Harris, E. L.; Kolesar, S. E.; Lovley, D. R. (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984-2989.
Semprini, L.; Hopkins, G. D.; McCarty, P. L.; Roberts P. V. (1992) In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biotransformation under anoxic conditions. Environ. Sci. Technol. 26, 2454-2461.
Senesi, N.; Miano, T.; Provenzano, M.; Brunetti., G. (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci. 152, 259-271.
Senesi, N.; Steelink, C. (1989) Application of ESR Spectroscopy to the study of humic substances. In Humic Substances II In Search of Structure; Hayes, M., MacCarthy, P., Malcolm, R., Swift, R., Eds.; John Wiley and Sons: New York, 373-408.
Sewell, G.W.; Gibson, S. A. (1991) Stimulation of the reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene. Environ. Sci. Technol. 25, 982- 984.
Skoog, D.A.; West, D M.; Holler, F. J. (1996) Fundamental of analytical chemistry, 7th ed. Harcourt Brace college publisher, Orlando, FL, appendix 5.
Stumm, W. (1992) Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface of Natural Systems. Wiley, New York, 428.
Su, C.; Puls, R. W. (1999) Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 33, 163-168.
Tratnyek, P. G.; Scherer, M. M. (1998) The effect of natural organic matter on reduction by zero-valent iron. 216th National Meeting, American Chemical Society. Boston, MA. Preprint Extended Abstracts, Division of Environmental Chemistry, 38, 125-126.
Tratnyek, P. G.; Schere, M. M.; Hu, S. (2001) effects of natural organic matter anthropogenic surface actants, and model quinones on the reduction of contaminants bt zero-valent iron. Wat Res. 35, 4435-4443.
Vancheeswaran, S.; Hyman, M. R.; Semprini, L. (1999) Anaerobic biotransformation of trichlorofluoroethene in groundwater microcosms. Environ. Sci. Technol. 32, 2040-2045.
Ukrainczyk, L.; Chibwe, M.; Pinnavaia, T. J.; Boyd, S. A. (1995) Reductive dechlorination of carbon tetrachloride in water catalyzed by mineral-supported Biomimetic Cobalt Macrocycles. Environ. Sci. Technol. 29, 439-445.
Wan, C., Chen, Y. H., and Wei, R., (1999) Dechlorination of chloromethanes on iron and palladium-iron bimetallic surface in aqueous systems. Environ. Toxicol. Chem. 18, 1091-1096.
Wang, C. B.; Zhang, W. X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154-2156.
Warren, K. D.; Arnold, R. G.; Bishop, T. L.; Lindholm, L. C.; Betterton, E. A. (1995) Kinetics and mechanism of reductive dehalogenation of carbon tetrachloride using zero-valence metals. J. Hazard. Mat. 41, 217-227.
Watson, G.W.; Wells, R.P.K.; Willock, D.J.; Hutchings, G. J. (2000) Density functional theory calculations on the interaction of ethene with the (111) surface of platinum. J. Phy. Chem. 104, 6439-6446
Watson, G.W.; Wells, R. P. K.; Willock, D. J.; Hutchings, G. J. (2000) Ab initio simulation of the interaction of hydrogen with the (111) surfaces of platinum, palladium and nickel. A possible explanation for their difference in hydrogenation activity. Chemical Communications, 8, 705-706.
Watson G.W.;Wells R. P. K.; Willock, D. J.; a Hutchings, G.J. (2001) A comparision of the adsorption and diffusion of hydrogen on the (111) surfaces of Ni, Pd, and Pt from density functional theory calculations. J. Phys. Chem. 105, 4889-4894.
Weber, E. J. (1996) Iron-mediated reductive transformations: investigation of reaction mechanism. Environ. Sci. Technol. 30, 716-719.
Weber, J.; Michalczyk, A. (1997) http://www.ar.wroc.pl/~weber/auw.htm.
Westrick, J. J.; Mello, J. W.; Thomas, R. F. (1984) The groundwater supply survey, J. AWWA, 52-59.
Zawaideh, L. I.; Zhang, T. C. (1998) The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems. Wat. Sci. Technol. 38, 107-115.
Zhang, W. X.; Wang, C. B. (1997) Rapid and complete dechlorination of TCE and PCBs by nanoscale Fe and Pd/Fe particles. 213th National Meeting, American Chemical Society. San Francisco, CA. Preprint Extended Abstracts, Division of \Environmental Chemistry, 37, 78-79.
Zhang, W. X.; Wang, C. B.; Lien, H. L. (1998) Treament of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today. 40, 387-395.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 22.黃國立,外國廠商參與政府採之探討,現代營建第二六三期,二OO一年十一月,頁五十七∼六十三。
2. 21.陳文雄,政府在採購制度扮演的角色,營造天下,一九九九年七月,頁十三∼十五。
3. 35.蕭家進,淺談美國政府採購制度及經驗啟示(下),現代營建第二五O期,二OOO年十月,頁五十九∼六十四。
4. 34.蕭家進,淺談美國政府採購制度及經驗啟示(上),現代營建第二四九期,二OOO年九月,頁三十八∼四十六。
5. 33.簡資修,加入世界貿易組織與政府採購,經濟前瞻,一九九九年七月五日,頁四十二∼四十五。
6. 32.戴肇洋,加入WTO對政府採購之影響,中國行政評論,一九九八年六月,頁七十七∼一O二。
7. 31.潘俊榮,營造業對政府採購法及施行細則提建言,營造天下,一九九九年四月,頁四∼六。
8. 30.潘秀菊、張祥暉,政府採購法契約解除與終止規定之探討,月旦法學雜誌第四十四期,一九九九年一月,頁九十四∼一O五。
9. 29.趙文穎、林桓,論WTO政府採購協定(GPA)之適用範圍與相關原則,經社法制論叢第二十期,一九九七年七月,頁一四五∼一六九。
10. 27.楊錫安,「政府採購電子化」之發展,研考雙月刊第二十五卷第一期,二OO一年二月,頁三十∼三十四。
11. 25.黃立,剖析政府採購法草案與政府採購協定,律師雜誌第二一三期,六月,頁十六∼二十八。
12. 24.黃國立,政府採購法對於投標文件補正機制之探討,現代營建第二五九期,二OO一年七月,頁六十五∼七十。
13. 23.國永超,政府採購法完成有感,審計季刊第十八卷第四期,一九九八年七月,頁八十∼九十七。
14. 14.周肇熙,談政府採購品質提昇,品質管制月刊,一九九九年二月,頁三十八∼四十一。
15. 13.林培州,澳洲政府採購與補償性交易措施,經濟前瞻,一九九九五月五日,頁六十六∼七十一。