跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/08 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王嘉蓮
研究生(外文):JiaLien Wang
論文名稱:正子斷層掃瞄之系統幾何模型在統計影像重建法的研究
論文名稱(外文):System Geometric Modeling in Statistical PET Image Reconstruction
指導教授:許靖涵
指導教授(外文):ChingHan Hsu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:正子斷層掃瞄統計影像重建法幾何模型
外文關鍵詞:PETstatistical image reconstructionpositron emission tomographygeometric model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
PET掃描為提供人體功能性影像之醫學利器,利用統計影像重建法(statistical image reconstruction)可以提昇核醫重建影像的品質,然而這類重建法需要精確估算光子被偵測機率並涉及大量的正向及反向投影(forward and backward projections)運算。傳統即時計算(on-the-fly)方法在每次疊代(iteration)運算的正向及反向投影步驟中皆需計算偵測機率值(detection probability)。隨著光子偵測機率計算模型趨於複雜,投影運算所需時間會大幅提高。本研究對統計影像重建法提出較有校執行方法的建議,將投影的幾何模型以機率矩陣(p矩陣)形式表示,則正向及反向投影運算轉為矩陣相乘形式,可避免重複前述之偵測機率值的重複計算。此外,p矩陣亦可結合非均勻取樣(non-uniform sampling),重建時不需額外考慮幾何弧形校正(geometric arc correction),避免不必要的修正計算。由於p矩陣為稀疏矩陣,針對其非零值作處理,進一步藉由環狀偵檢器與正方形影像間的八方對稱關係,大幅減少重建影像所需處理的資料量至原來的0.18 %。如此不僅節省p矩陣所需的儲存空間,亦有效提高疊代運算的速度。搭配面積法的幾何模型,以較精確的方式估算偵檢機率值,使統計影像重建法的重建影像品質較佳。本研究並對八方對稱提出新的計算方法,使其能自然應用於加速演算法OSEM(ordered subsets expectation maximization)中,在臨床上能快速重建出核醫影像。

Statistical image reconstruction methods can improve the quality of PET image results by using accurate probability model of photon detection. However, these statistical methods usually require repetitive forward and backward projections, which are computationally intensive. Implementation variations of the projection operations can greatly affect the reconstruction efficiency. The traditional on-the-fly method directly computes probability of the forward and backward projections during image iterations. As the probability model of photon detection become more complex, this approach will become less applicable due to the heavier computational load. In order to effectively compute projection operations, we suggest a matrix-based approach that each element of the matrix represents the probability of detecting a coincidence event from a voxel to a detector pair based on scanner’s geometry. Consequently, a forward or backward projection can be transformed into a simple matrix multiplication without repeated computation of probability during image reconstruction. In addition, probability matrix can incorporate non-uniform sampling distance, so that the PET data needs not to be pre-processed for geometric arc correction additionally. Because most PET scanners adopt cylindrical structure, there exist several geometric symmetries that can be used to reduce the numerical computation as well as the matrix storage by a factor of eight as suggested by Kaufman. Moreover, by integration of the symmetry and the sparseness of the probability matrix, the storage space can be further downsized to 0.18% of its original magnitude. In this work, we also examine two types of probabilistic model for coincidence detection: area-based and interpolative. From the experimental results, the area-based model shows better quality of the reconstructive image compared to interpolative one. In this thesis, we have shown that statistical image reconstructions with probability matrix and area-based detection model can generate more effective and accurate results for PET imaging.

第 1 章、 前言.....................................1
第 2 章、 PET基本原理..............................2
第 1 節、 PET掃描.................................2
第 2 節、 正弦圖..................................6
第 3 章、 PET影像重建..............................9
第 1 節、 PET資料模型.............................9
第 2 節、 統計影像重建法..........................12
第 4 章、 系統模型 .................................23
第 1 節、 投影....................................24
第 2 節、 稀疏矩陣................................28
第 3 節、 對稱....................................30
第 4 節、 幾何模型................................36
第 5 章、 實驗與討論...............................38
第 1 節、 模擬PET掃描的幾何參數...................38
第 2 節、 P矩陣的儲存空間.........................38
第 3 節、 重建影像的執行時間......................39
第 4 節、 幾何模型................................42
第 5 節、 影像重建................................46
第 6 章、 結論與未來方向...........................55
參考文獻...........................................57

1. John M. Ollinger and Jeffrey A. Fessler, “Positron-emission tomography, ” IEEE Signal Processing Magazine, Vol. 41, No.1, pp. 43-55, January 1997.
2. Cliff X. Wang, Wesley E. Snyder, Griff Bilbro, and Pete Santago, “ Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images, ” Computers in Biology and Medicine, vol. 28, pp. 13-25, 1998.
3. S. Vandenberghe, Y. D’ Asseler, R. Van de Walle, T. Kauppinen, M. Koole, L. Bouwens, K. Van Laere, I. Lemahieu, and R. A. Dierckx, “Iterative recinstruction algorithms in nuclear medicine, ” Computerized Medical Imaging and Graphics, Vol. 25, pp. 105-111, 2001.
4. Rachel A. Powsner and Edward R. Powsner, Essentials of Nuclear Medicine Physics. Blackwell Science. 1998.
5. Thomas F. Budinger, “ Advances in positron tomography for oncology,” Nuclear Medicine and Biology, vol. 23, pp. 659-667, 1996.
6. James E. Turner, Atoms, Radiation, and Radiation Protection. Second edition. John Wiley & Sons, Inc. 1995.
7. Douglas C. Montgomery and George C. Runger, Applied Statistics and Probability for Engineers. Second edition. John Wiley & Sons, Inc. 1999.
8. L. Kaufman, “ Maximum likelihood, least squares, and penalized least squares for PET, ” IEEE Transactions on Medical Imaging, Vol.12, No. 2, pp. 200-214, June 1993.
9. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, Vol. MI-1, No. 2, pp. 113-122, October 1982.
10. Todd K. Moon, “ The expectation-maximization algorithm, ” IEEE Signal Processing Magazine, pp. 47-60, November 1996.
11. Geoffrey J. McLachlan and Thriyambakam Krishnan, The EM Algorithm and Extensions. John Wiley & Sons, Inc. 1997.
12. K. Lange and R. Carson, “ EM reconstruction algorithms for emission and transmission tomography, ” Journal of Computer Assisted Tomography, Vol. 8, No. 2, pp. 306-301, April 1984.
13. David G. Luenberger, Linear and Nonlinear Programming. Second edition. Addison-Wesley Publishing Company. 1984.
14. K. Lange, M. Bahn, and R. Little, “ A theoretical study of some maximum likelihood algorithms for emission and transmission tomography, ” IEEE Transactions on Medical Imaging, Vol.6, No. 2, pp. 106-114, June 1987.
15. Linda Kaufman, “Implementing and accelerating the EM algorithm for positron emission tomography,” IEEE Transactions on Medical Imaging, Vol. MI-6, No. 1, pp. 37-51, March 1987.
16. H. Malcolm Hudson and Richard S. Larkin, “ Accelerated image reconstruction using ordered subsets of projection data, ” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, pp.601-609, December 1994.
17. Brian F. Hutton, H. Malcolm Hudson, and Freek J. Beekman, “ A clinical perspective of accelerated statistical reconstruction,” European Journal of Nuclear Medicine, vol. 24, pp. 797-808, 1997.
18. Jinyi Qi, Richard M. Leahy, Simon R. Cherry, Arion Chatziioannou, and Thomas H. Farquhar, “High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner,” Physics in Medicine and Biology, Vol. 43, pp. 1001-1013, 1998.
19. Erkan Mumcuoglu, Richard Leahy, and Simon Cherry, “ Bayesian reconstruction of PET images: methodology and performance analysis, ” Physics in Medicine and Biology, Vol. 41, pp. 1777-1807, 1996.
20. E. U. Mumcuoglu, R. Leahy, S. R. Cherry, and Z. Zhou, “ Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images, ” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, pp. 687-701, December 1994.
21. Avinash C. Kak and Malcolm Slaney, “ Principle of computerized tomographic imaging, ” IEEE, 1988.
22. Jia-Lien Wang, Ching-Han Hsu, “A Study of Forward and Backward Projectors in Iterative Reconstructions,” Annual Meeting of the Society of Nuclear Medicine, Taiwan, 2001.
23. Whei-Han Lin, Jia-Lien Wang, Ching-Han Hsu, “Efficient/Parallel Projection Operators in Iterative PET Image Reconstructions,” Annual Meeting of the Society of Nuclear Medicine, Taiwan, 2002.
24. Ming-Yueh Chang, Jia-Lien Wang, Pan-Fu Kao, Ching-Han Hsu, “Performance Evaluation of Gradient-Based Optimization Methods in PET Transmission Image Reconstruction,” Annual Meeting of the Society of Nuclear Medicine, Taiwan, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top