跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳松勳
論文名稱:建立線上微管柱分離及感應耦合電漿質譜儀連線分析系統應用於微透析樣品中重金屬元素分析研究
論文名稱(外文):Development of On-line FI-Microcolumn-ICP-MS Analytical System for the Determination of Trace Elements in Microdialysis Samples
指導教授:楊末雄楊末雄引用關係孫毓璋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:線上微管柱基質分離感應耦合電漿質譜儀微透析重金屬元素分析微量分析
相關次數:
  • 被引用被引用:3
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在針對微小量高鹽類基質樣品如生物微透析樣品,建立一線上基質分離系統,配合感應耦合電漿質譜儀進行微量元素分析。為配合樣品極少量的體積,將以螯合離子交換樹脂填充之微管柱配合流動注入系統建立線上基質分離系統,有鑑於為避免管柱填充材質因接觸溶劑而使其體積產生劇烈變化,將採用在物理化學性質較為穩定的商業化的螯合樹脂,Muromac A-1,作為微管柱填充材料。所填充的微管柱大小僅內徑1.5 mm×長3.5 mm,另外,為能有效控制污染與方便系統操作,設計以兩個十相閥與一個六相閥,藉由管路與微管柱連接,建構流動注入系統,並與ICP-MS連線以進行線上分析。為使分析系統效能充分發揮以獲取最佳之分析效果,將對於基質分離系統的重要影響條件,包括管柱調態溶液的組成、樣品的pH值、樣品添加緩衝液濃度、以及沖提液的組成與載流液流速等進行探討,藉以獲得基質分離系統最適化操作條件。
濃縮分離系統之操作條件經最適化後,一微透析樣品將注入以1M醋酸銨緩衝溶液調態之微螯合管柱後,分析元素將受螯合而吸附,繼而再以去離子水沖洗管柱移去殘留的基質後,最後則以10%(v/v)硝酸對管柱進行沖提,並連接導入ICP-MS當中進行測定。其整個操作過程可於10分鐘內完成。而將微透析樣品以FI-micro-column-ICP-MS連線分析系統進行分析,在所探討的元素中(Cd、Cu、Mn、Ni、Pt、Zn)中,除了Ni與Zn之外,大多份元素偵測極限的偵測極限僅為數百個ng L-1,而Zn亦僅為2.7 μg L-1。為確認方法的可靠性,將以配製一模擬生物樣品,以微透析系統取樣,FI-micro-column-ICP-MS系統進行分析,並與模擬樣品直接以石墨爐原子吸收光譜儀與ICP-MS分析之結果進行比對。由三者間結果之一致性而獲知本分析方法具相當之可靠性。同時藉由樣品之重複分析結果可顯示此方法具良好之精密度。綜合以上結果顯示,本研究所建立之FI-micro column-ICP-MS 連線分析系統,未來在與微透析取樣裝置連線進行微小區域樣品中重金屬元素之濃度動態變化趨勢的現場、原位、連續測定上,應已具有一定的可行性。
A flow injection on-line matrix separation system coupled with inductively coupled plasma mass spectrometry was developed for the determination of trace elements in the microdialysis samples consist of high salt content samples. In view of avoiding the influence causing by the swelling and shrinking of resin, a commercial available iminodiacetate resin, named Muromac A-1, was packed into a homemade micro-column (1.5 mm id.× 3.5 mm). The manifold of on-line separation/ preconcentration flow injection system was constructed by two 10-ways and one 6-ways valves. In order to achieve the optimized analytical performance, the effects of the composition of the condition solution, variation of the sample pH, amount of the buffer, and composition of the eluent, carrier flow rate and the resulted peaks of analytes were investigated.
Under the optimized conditions, a microdialysis sample (adjusted to pH 6.0~7.0) pass through the micro-column conditioned with 1M ammonium acetate, after washing the column with water, the adsorbed metals were subsequently eluted into the ICP-MS with 10 % HNO3. Overall operation time of on-line matrix separation could be accomplished within 10 min only. Detection limits of the trace metals in the microdialysis samples were several hundreds ng L-1 below except Ni. The validity of the method developed was confirmed by the good agreement of results obtained both with FI-micro column-ICP-MS system after microdialysis sampling and graphite furnace atomic absorption spectrometry (GFAAS) and ICP-MS directly. According to our experimental results, the method could be successfully applied to the determination of Cd, Cu, Mn, Ni, Pt and Zn down to the sub-μg L-1 level in the microdialysis samples with just 20μL sample volume.
中文摘要………………………………………………………………………. I
英文摘要………………………………………………………………………. II
目 錄………………………………………………………………………. III
表 目 錄………………………………………………………………………. V
圖 目 錄………………………………………………………………………. VI
第一章 前言…………………………………………………………………... 1
1.1分析化學在生物醫學研究中扮演的角色…………………………… 1
1.2生物醫學分析中採樣技術之發展..……………………………….. 3
1.3複雜基質樣品分析技術的發展…………………………………….. 5
1.4發展微小化分析技術之趨勢…………………………………….….. 8
1.5線上微管柱基質分離系統配合感應耦合電漿連線分析技術的發展 13
1.6螯合離子交換樹脂的選用………………………………………….. 17
1.7 研究目的…………………………………………………………….. 18
第二章 儀器與分析原理……………………………………………………... 19
2.1 感應耦合電漿質譜分析儀(ICP-MS)…………………………….. 19
2.1.1 樣品導入系統(Sample instruction system)……………... 20
2.1.2 感應耦合電漿離子源(ICP as an ion source)………..……... 22
2.1.3 離子萃取(Ion extraction)………………………………..... 24
2.1.4 離子聚焦(Ion focusing)…………………………………... 25
2.1.5 四極柱質量分析器(Quadrupole mass analyzer)…………. 28
2.1.6 離子偵測(Ion detection)…………….…………………….. 29
2.1.7 ICP-MS具有以下數個分析特性與優點…………………….. 31
2.2 螯合樹脂之基質分離/前濃縮的原理………………………………. 33
2.3 微透析(Microdialysis)取樣法…………………………………….… 36
第三章 實驗步驟…………………………………………….……………….. 38
3.1 線上微管柱與感應耦合電漿質譜儀連線系統的建立…………... 38
3.1.1 儀器裝置………………………………………………….….. 38
3.1.2 藥品、試劑和用水…………………………………………… 39
3.1.3 容器清洗……………………………………………………... 40
3.1.4 分離微管柱之製作…………………………………………... 40
3.1.5 線上微管柱分離系統的建立………………………………... 42
3.2 ICP-MS操作參數與分離管柱之最適化操作條件的探討………… 43
3.2.1. ICP-MS操作參數之最適化條件探討……………………... 43
3.2.2 分離管柱之最適化條件探討……………………………..... 44
3.3以微管柱基質分離系統配合感應耦合電漿質譜儀線上分析微透析樣品中微量元素可行性之探討………………………………… 45
3.3.1 FI-micro column-ICP-MS分析效能評估…………………….. 46
3.3.2 microdialysis-FI-micro column-ICP-MS可行性探討……….. 46
第四章 結果與討論…………………………………………………………... 49
4.1 填充微管柱線上基質分離系統……………………………………. 49
4.1.1不同管柱大小對待測元素吸附、脫附效果的影響………… 49
4.1.2 不同流動注入系統分析效能之比較……..………….……… 51
4.2 微管柱分離條件之探討…………………………………………….. 54
4.2.1 微管柱吸附條件探討…………………..…………….……… 54
4.2.2脫附條件之探討…………………………………………….. 58
4.2.3載流液流速對層析結果的影響…………………………….. 59
4.3 ICP-MS最佳化操作參數之探討……………………………………. 60
4.4以微管柱基質分離系統配合感應耦合電漿質譜儀線上分析微透析生物樣品中微量元素可行性之探討……………………………….. 65
4.4.1 FI-micro column-ICP-MS分析效能評估……………………. 65
4.4.2 microdialysis-FI-micro column-ICP-MS可行性探討………... 66
第五章 結論…………………………………………………………………... 69
第六章 參考文獻……………………………………………………………... 70
1. T. D. Lyon, G. S. Fell, J. Anal. At. Spectrom., 1988, 3, 265.
2. N. torto, J. Mwatseteza, G. Sawula, Anal. Chem. Acta, 2002, 456, 253.
3. C. E. Lunte and D. O. Scott, Anal. Chem., 1991, 63, 773A.
4. Y. Zhao, X. Liang, C. E. Lunte, Anal. Chim. Acta, 1995, 316, 403.
5. P. Lonnroth, U. Smith, J. Int. Med., 1990, 227, 295.
6. F. C. Chem et al., J. Chromatogr., 1992, 582, 19.
7. R. A. Gazzara, S. L. Andersen, J. Neurochem., 1994, 62, 1741.
8. N. Javelle, B. Renaud, L. Lambas, J. Neurochem., 1997, 68, 683.
9. A. Mendlin et al., J. Neurochem., 1996, 67, 617.
10. M. G. Boutelle, L. K. Fellows, C. Cook, Anal. Chem., 1992, 64, 1790.
11. A. Chem, C. E. Lunte, J. Chromatogr. A, 1995, 291, 29.
12. W. H. Church, J. B. Justic, Anal. Chem., 1987, 59, 712.
13. M. Pravda et al., Anal. Chem., 1997, 69, 2354.
14. P. Lonnroth et al., J. Chromatogr., 1991, 568, 419.
15. R. S. Houk, Anal. Chem. 1986, 58, 97A.
16 S. H. Tan, G. Horlick, Appl. Spectrosc. 1986, 40, 445.
17. P. H. Lin, K. S. K. Danadurai, S. D. Huang, J. Anal. At. Spectrom., 2001, 16, 409.
18. K. E. Jarvis, A. L. Gray, R. S. Houk, “Handbook of Inductively Coupled Plasma Mass Spectrometry”, Blackie, Glasgow, 1992.
19. J. Sneddon, “Sample Introduction in Atomic Spectroscopy”, Elsevier Science Publisher, New York , 1990.
20. V. A. Fassel and B. R. Bear, Spectrochim. Acta, 1986, 41B, 1089.
21. K. E. LaFreniere, G. W. Rice, V. A. Fassel, Spectrochim. Acta, 1985, 40B, 1495.
22. D. R. Wiederin, F. G. Smith, R. S. Houk, Anal. Chem., 1991, 63, 219.
23. K. E. LaFreniere, V. A. Fassel, D. E. Eckels, Anal. Chem., 1987, 59, 879.
24. F. Vanhaecke et al., J. Anal. At. Spectrom., 1996, 11, 543.
25. S. D. Lofthouse, G. M. Greenway, S. C. Stephen, J. Anal. At. Spectrom., 1997, 12, 1373.
26. S. Augagneur et al., J. Anal. At. Spectrom., 1996, 11, 713.
27. S. A. Pergantis, E. W. Heithmar, T. A. Hinners, Anal. Chem., 1995, 67, 4530.
28. H. Liu, A. Montaser, S. P. Dalon, J. Anal. At. Spectrom., 1996, 11, 307.
29. S. H. Nam, J. S. Lim, A. Montaser, J. Anal. At. Spectrom., 1994, 9, 1357.
30. S. Saverwyns , J. Anal. At. Spectrom., 1997, 12, 1047.
31. J. A. Mclean, H. Zhang, A. Montaser, Anal. Chem., 1998, 70, 1012.
32. L. Wang, S. W. May, R. F. Browner, S. H. Pollock, J. Anal. At. Spectrom., 1996, 11, 1137.
33. R. W. Kirlew, and J. A. Caruso, Appl. Spectrosc., 1998, 52, 770.
34. MCN-100 Micro-Concentric Nebulizer User’s Manual, Cetac Technologies, Omaha, NE.
35. J. Ruzicka, E. H. Hansen, Anal. Chem., 2000, 5, 212A.
36. H. H. Chen, D. Beauchemin, J. Anal. At. Sprectrom., 2001, 16, 1356.
37. S. Vijayalakshmi, R. K. Prabhu, T. R. Mahalingam, C. K. Mathews, J. Anal. At. Spectrom., 1992, 7, 565.
38. S. Hirata, Y. Ishida, M. Aihara, K. Honda, O. Shikino, Anal. Chim. Acta. 2001, 438, 205.
39. R. E. Sturgeon, S. N. Willie, S. S. Berman, Anal. Chem., 1985, 6, 57.
40. J. N. Fang, S. Xu, G. Tao, J. Anal. At. Spectrom., 1996, 11, 1.
41. Z. H. Liu, S. D. Huang, Spetrochim. Acta Part B, 1995, 2, 197.
42. S. Olsen, L. C. R. Pessenda, J. Ruzicka, E. H. Hansen, Analyst, 1983, 108, 905.
43. Z. Fang, J. Ruzicka, E. H. Hansen, Anal. Chem., 1984, 164, 23.
44. Z. Fang, S. Xu, S. Hang, Anal. Chim. Acta, 1984, 164, 41.
45. S. D. Hartenstein, J. Ruzicka, G. D. Christian, Anal. Chem., 1985,57, 21.
46. R. A. Nickson, S. J. Hill, P. J. Worsfold, Anal. Chim. Acta, 1997, 351, 311
47. M. Nicolai, C. Rosin, N. Tousset, Y. Nicolai, Talanta, 1999, 50, 433.
48. S. N. Willie, J. W. H. Lam, L. Yang, G. Tao, Anal. Chim. Acta, 2001, 447, 143.
49. K. W. Warnken, D. Tang, G. A. Gill, P. H. Santschi, Anal. Chim. Acta, 2000, 423, 265.
50. S. Hirata, K. Honda, O. Shikino, N. Maekawa, M. Aihara, Spectrochim. Acta, Part B, 2000, 55, 1089.
51. S. D. Lofthouse, G. M. Greenway, S. C. Stephen, J. Anal. At. Spectrom., 1999, 14, 1839.
52. D. Beauchemin, S. S. Berman, Anal. Chem., 1989, 61, 1857.
53. A. Mizuike, “Enrichment Techniques for Inorganic Trace Analysis”, Springer-Verlag Berlin, Heidelberg, 1983.
54. Y. H. Sung, Z. S. Liu, S. D. Huang, Spectrochim. Acta, Part B, 1997, 52, 755.
55. Y. H. Sung, Z. S. Liu, S. D. Huang, J. Anal. At. Spectrom., 1997, 12, 841.
56. V. Porta, O. Abollino, E. Mentasti, C. Sarzanini, J. Anal. At. Spectrom., 1991, 6, 119.
57. S. D. Lofthouse, G. M. Greenway, S. C. Stephen, Anal. Commun., 1998, 35, 177.
58. R. E. Sturgeon, S. S. Berman, A. Desaulniers, D. S. Russel, Talanta, 1980, 27, 85.
59. R. E. Sturgeon, S. S. Berman, J. A. H. Desauliners, A. P. Mykytiuk, J. W. Mclaren, D. S. Russel, Anal.Chem., 1980, 52, 1585.
60. H. M. Kingston, I. L. Barnes, T. J. Brady, T. C. Rains, Anal. Chem., 1978, 50, 2064.
61. S. D. Hartenstein, J. Ruzicka, G. D. Christian, Anal. Chem., 1985, 57, 21.
62. Z. L. Fang, Spectrochim. Acta. Rev., 1991, 14, 235.
63. C. R. Lan, M. H. Yang, Anal. Chim. Acta, 1993, 00, 1.
64. C. Dubuisson, E. Poussel, J. M. Mermet, J. Anal. At. Spectrom., 1997, 12, 281.
65. Weijer, P. V. D., Baeten, W. L. M., Bekkers, M. H. J., Vullings, J. M. G., J. Anal. At. Spectrom., 1992, 7, 599.
66. S. Maza, N. Glon, G. Cretier, J. L. Rocca, J. M. Mermet, J. Anal. At. Spectrom., 1998, 17, 366.
67. S. F. Boulyga, H. J. Dietze, J. S. Becker, Mikrochim., Acta, 2001, 137, 93.
68. M. A. Dexter, P. K. Appelblad, C. P. Ingle, J. H. Batey, H. J. Reid, B. L. Sharp, J. Anal. At. Spectrom., 2002, 17, 183.
69. Q. Xie, R. Kerrich, J. Anal. At. Spectrom., 2002, 17, 69.
70. C. P. Ingle, P. K. Appelbad, M. A. Dexter, H. J. Reid, B. L. Sharp, J. Anal. At. Spectrom., 2001, 16, 1076.
71. I. Feldmann, N. Jakulowski, D. Stuewer, Fresenius. J. Anal. Chem., 1999, 365, 415.
72. I. Feldmann, N. Jakulowski, D. Stuewer, Fresenius. J. Anal. Chem., 1999, 365, 422.
73. A. Montaser, “Inductively Coupled Plasma Mass Spectrometry”, Wiley-VCH, New York, 1998.
74. H. F. Walton, R. D. Rocklin, “Ion Exchange in Analytical Chemistry”, CRC, Boston, 1990.
75. Samuelson, O., Anal. Chem., 1939, 116, 328.
76. Robert Kunin, “Ion Exchange Resins”, Malabar, Florida, 1985.
77. S. C. Pai, Anal. Chim. Acta, 1988, 211, 271.
78. S. C. Pai, P. Y. Whung, R. L. Lai, Anal. Chim. Acta, 1988, 211, 257.
79. M. Pesavento, R. Biesuz, M. Gallorini, A. Profumo, Anal. Chem., 1993, 65, 2522.
80. S. J. De Mora, R. M. Harrison, Anal. Chim. Acta, 1983, 153, 307.
81. D. R. Wiederin, R. S. Houk, Appl. Spectrosc., 1991, 45, 1408.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top