跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪家駿
論文名稱:建立Microdialysis-desalter-ICP-MS連線分析技術應用於模擬活體動物體內微量元素之現場、原位、連續、動態分析研究
論文名稱(外文):Development of on-line microdialysis-desalter-CP-MS analytical method for in-situ, in-vivo, continuous and dynamic determination of trace elements in simulated living animal system
指導教授:楊末雄楊末雄引用關係孫毓璋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:感應耦合電漿質譜儀選擇性薄膜分離裝置微透析連線系統
相關次數:
  • 被引用被引用:4
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究旨在開發一可進行高鹽類基質樣品中微量元素分析的線上取樣及基質分離技術。研究中首先係針對建立Desalter-ICP-MS連線分析系統進行高鹽類基質樣品中微量元素分析的可行性進行探討;繼結合微透析取樣裝置,建立Microdialysis-desalter-ICP-MS之連線分析系統,並探求其應用於模擬活體動物體內微量元素之原位、連續、動態分析的可行性。
在Desalter-ICP-MS連線分析系統的建立過程中,本研究首先針對選擇性薄膜分離裝置Desalter之各項最適化的操作條件進行探討,並進行此分析系統方法可靠性的評估。研究結果顯示,當使用75 mM H2SO4作為Desater的外層交換液時,樣品溶液中EDTA與待測微量元素之鉗合物極易受到來自交換液氫離子的影響,造成部分元素回收率出現偏低的現象。為解決上述部分元素回收率偏低的問題,本研究嘗試改以650 mM NH4Cl緩衝溶液作為外層換液,即可有效地避免因在去鹽的過程中大量的氫離子進入樣品槽所導致之部分待測元素回收率不佳的問題。在最佳化實驗條件下,所建立之連線分析系統可長時間穩定地移除樣品中的鹽類基質,並成功地降低ICP-MS測定過程所遭遇之各項質譜性及非質譜性干擾,增加連線系統後端ICP-MS測定之靈敏度及穩定度。在方法可行性的探討過程中,本研究分別以測定NIST SRM 1643C標準參考樣品及利用不同分析方法進行Ringer溶液中微量元素的比對分析,來確認本分析方法的可靠性,實驗結果顯示,所建立之Desalter-ICP-MS連線分析系統可準確地測定SRM 1643C中各項微量元素;在不同方法的比對分析中,利用所建立之Desalter-ICP-MS連線分析系統測定Ringer溶液中各項微量元素的分析結果亦與其他方法測得之結果頗為一致。
最後,根據利用Microdialysis-desalter-ICP-MS連線分析系統測定模擬活體動物體內微量元素之濃度變化實驗結果發現,所建立之Microdialysis-desalter-ICP-MS連線分析系統亦可長時間穩定地測定Ringer溶液中各待測元素的濃度變化情形。從本研究中各項方法可行性評估結果可知,所建立之Microdialysis-desalter-ICP-MS連線分析系統應具實際運用於活體動物體內微量元素之原位、連續、動態分析之可行性。
Abstract
As soon as scientists became aware of the fact that the bio-availability, toxicity and mobility of an element strongly depend on the concentration of elements, the study on quantification of different elements are receiving more and more attention. Environmental or bio-inorganic chemistry has been established the discipline which interfaces the research areas of inorganic trace analysis and biology and environment. Owing to trace analytes and high matrix content are always the main obstacles should be overcome in conjuncting analytical chemistry with biological and environmental science, the development an in-situ, continuous and robust analytical technique dealing with high salt contented samples is still highly demanded.
To monitor the temporal variation of trace elements in the living animal, microdialysis sampling technique has become an indispensible tool. Owing to the salt content in the pufusate, ringer solution, is near 1% w/v and the concentration of trace elements might be as low as mg L-1- sub-mg L-1, direct determination of trace elements in such samples is considered to be impossible for current instrumentation techniques. In order to get rid of the salt interferences prior to the instrumental analysis, a novel analytical system comprised of in-line permselective membrane separation and on-line ICP-MS measurement is aimed to be introduced in this study. Because of trace elements and sodium are all cations, a selective chelating agent, named EDTA, was added to form anionic EDTA complexes with analyte ions. However ion exchange mechanism need to keep the charge equilibrium, a lot of sodium ions can be removed to strip solution and hydrogen ions entered the sample cell from the strip solution. This process will reduce the pH from 7 to 2 and the elements combined with EDTA will be substituted by hydrogen ions. By the way of using basic 650mM NH4Cl as strip buffer, a lot of NH4+ will replace with H+ to avoid the pH decreasing. Over 99.9% of 9000 ppm NaCl can be removed and the interferences caused by dissolved salts can be completely eliminated. The robustness of proposed method is expected to be satisfactory for the long-term analysis of high salt content samples and the recovery of analyte elements can maintain 100±10%.
Based on the currently obtained results, a hyphenation system comprised of in-situ microdialysis sampling, in-line membrane separation and on-line ICP-MS measurement is expected to be established for continuouslym, in-vivo and in-situ monitoring the dynamic variation of trace elements in a living animal.
目錄
第一章 前言………………………………………………………..….1
1.1分析化學在生物醫學及環境科學研究上的重要性…………….….1
1.2 微小區域採樣分析技術發展之需求……………………………….3
1.3 連線測定系統的發展……………………………………………….5
1.4 樣品前處理技術的發展………………………………...…………11
1.5 研究目的………………………………………………...…………17
第二章 儀器分析及原理……………………………………..….…….19
2.1 感應耦合電漿質譜儀分析法(ICP-MS)……………………..…….19
2.2選擇性薄膜分離裝置分析原理……………………………………33
2.3 微透析(Microdialysis)取樣法……………………………………..40
第三章 實驗部分………………………………………………………42
3.1 Desalter-ICP-MS連線分析系統……………………………………42
3.1.1 實驗環境、試劑及用水……………………………………..43
3.1.2 Desalter操作參數最適化探討……………………………….45
3.2 ICP-MS最適化條件探討…………………………………………..47
3.3 Microdialysis-desalter-ICP-MS連線系統的建立………………….48
第四章 結果與討論……………………………………………………50
4.1 Desalter-ICP-MS連線系統的最適化條件探討……………………50
4.1.1選擇性鉗合試劑之選擇………………………………………50
4.1.2 交換液組成與流速最適化探討……………………………..56
4.1.3 樣品流速最適化條件之探討………………………………..69
4.1.4 EDTA用量最適化之探討……………………………………71
4.2. ICP-MS最適化操作條件之探討………………………………....73
4.3 Microdialysis-Desalter-ICP-MS連線系統分析效能………………83 4.3.1 Desalter-ICP-MS連線分析系統空白值之探討……………83
4.3.2 Desalter-ICP-MS分析方法之可靠性………………………84
4.4 Microdialysis-desalter-ICP-MS連線分析系統…………………..90
第五章 結論…………………………………………………………..100
參考文獻 ……………………………………………………………..102
Reference
1. T.D. Lyon, G.S. Fell, J. Anal. At. Spectrom., 3 (1998) 265.
2. C.E Lunte, D.O. Scott and P.T. Kissinger, Anal. Chem., 63(1991) 773A.
3. Ernost Merian, Metals and Their Compounds in The Environment, VCH Publishers, 1990.
4. C.E. Lunte, D.O. Scott and P.T. Kissinger, Anal. Chem., 63(1991) 773A.
5. C.E. Lunte, D.O. Scott and P.T. Kissinger, Anal. Chem., 63(1991) 773A.
6. Y. Zhao, X. Liang, and C.E. Lunte, Anal. Chim. Acta, 316, 403(1995).
7. Y. Huang, Z. Zhang, J. Lv and H. Cheng, Anal. Chim. Acta, 419(2000) 175.
8. T. Hirschfeld, Anal. Chem., 1980, 52,297A
9. J. Sneddon, “Sample Introduction in Atomic Spectroscopy”, Elsevier Science Publisher, New York(1990).
10. V.A. Fassel and B.R. Bear, Spectrochim. Acta., 41B, 1089(1986).
11. Carey, F.A. Byrdy, and J.A. Caruso, J. Chromatogr. Sci., 31, 330(1993).
12. K.E. Lawrence, G.W. Ride, and V.A. Fassel, Anal. Chem., 56, 292(1984).
13. R. Wiederin, F.G. Smith and R.S. Houk, Anal. Chem., 63, 219(1991).
14. K.E. Lawrence, V.A. Fassel and D.E. Eckels, Anal. Chem., 59, 879(1987).
15. F. Vanhaecke, M. van Holderbeke, L. Moens, and R. Dams, J. Anal. At. Spectrom., 11,543(1996).
16. S.D. Lofthouse, G.M. Greenway and S.C. Stephen, J. Anal. At. Spectrom., 12, 1373(1997).
17. S. Augagneur, B. Medena, J. Szpunar, and R. Lobinski, J. Anal. At. Spectrom., 11, 713(1996).
18. S.A. Pergantis, E.W. Heithmar and T.A. Hinners, Anal. Chem., 67, 4530(1995).
19. H. Liu, A. Montaser, S.P. Dolan, and R.S. Schwartz, J. Anal. At. Spectrom., 11, 307(1996).
20. S.H. Nam, J.S. Lim and A. Montaser, J. Anal. At. Spectrom., 9, 1357(1994).
21. M.W. Raynor, G.D. Dawson, M. Balcerzak, W.G. Pretorius, and R. Dams, J. Anal. At. Spectrom., 12, 1047(1997).
22. M.W. Raynor, G.D. Dawson, M. Balcerzak, W.G. Pretorius, and L. Ebdon, J. Anal. At. Spectrom., 12, 1057(1997).
23. M.W Raynor, K.D. Bartle and B.W. Cook, J. High Resolut. Chromatogr., 15, 361(1992).
24. J.A. Mclean, H. Zhang, and A. Montaser, Anal. Chem., 70, 1012(1998).
25. L. Wang, S.W. May, R.F.Browner, and S.H. Pollock, J. Anal. At. Spectrom., 11, 1137(1996).
26. R.W. Kirlew and J.A. Caruso, Appl. Spectrosc., 52, 770(1998).
27. S. Mazan, N. Glon, G. Cretier, J.L. Rocca and J.M. Mermet, J. Anal. At. Spectrom., 17(1998), 366-370.
28. S.F. Boulyga, H.J. Dietze, and J.S. Becker, Mikrochim. Acta., 137(2001), 93-103.
29. M.A. Dexter, P.K. Appelblad, C.P. Ingle, J.H. Batey, H.J. Reid, and B.L. Sharp, J. Anal. At. Spectrom., 17(2002), 183-188.
30. Q. Xie, and R. Kerrich, J. Anal. At. Spectrom., 17(2002), 69-74.
31. C.P. Ingle, P.K. Appelblad, M.A. Dexter, H.J. Reid, and B.L. Sharp, J. Anal. At. Spectrom., 16(2001), 1076-1084.
32. I. Feldmann, N. Jakulowski, and D. Stuewer, Fresenius. J. Anal. Chem., 365(1999), 415-421.
33. I. Feldmann, N. Jakulowski, and D. Stuewer, Fresenius. J. Anal. Chem., 365(1999), 422-428.
34. M. Jakubowski, L. Moens, and F. Vanhaecke, Spectrochim. Acta B, 53(1998), 1739-1763.
35. J.T. Rowan, and R.S. Houk, Appl. Spectrosc., 43(1989), 976-980.
36. D.J. Douglas, Can. J. Spectrosc., 34(1989), 38-49.
37. A. Mizuike, Enrichment Techniques for Inorganic Trace Analysis, Springer-Verlag, 1983.
38. P. Figura and B. McDuffle, Anal. Chem., 49(1977)1950.
39. P. Figura and B. McDuffle, Anal. Chem.,52(1980)1433.
40. L. Brugmann, L.G. Danielsson, B.V. Magnusson and S. Westerlund, Mar. Chem., 13(1983)327.
41. A.Boyle and J.M. Edmond, Anal. Chim. Acta, 86(1977)199.
42. W. Lund and O. Onshus, Anal. Chim. Acta, 86(1976)109.
43. L.G. Bodeaing, P. Valenta and H.W. Nurnberg, Fresenius Z. Anal. Chem., 311(1982)187.
44. J.R. Thayer, J.S. Rohrer, N. Avdalovic, R.P. Gearing, Analytical Biochemistry,
256 (1998), 207-216.
45. R.A.M. van der Hoeven, A.J.P. Hofet, U.R. Tjaden, J. van der Greef, Nelson Torto, L. Gorton, G. M. Varga and C. Bruggink, Rapid Communication in Mass Spectrometry, vol. 12(1998), 69-74.
46. N. Torto, A. Hofte, R. van der Hoeven, U. Tjaden, L. Gorton, G.M. Varga, C. Bruggink and J. van der Greef, Journal of Mass Spectrometry, Vol. 33(1998), 334-341.
47. M. Bettinelli, S. Spezia, Journal Chromatography A., 709(1995), 275-281.
48. R.G. Fernandez, J.I. G. Alnoso, and A. S. Medel, J. Anal. At. Spectrom., 16(2001), 1035-1039.
49. H. Gurleyuk, and D. Wallschlager, J. Anal. At. Spectrom., 16(2001), 926-930.
50. A. Dudoit, and A. Pergantis, J. Anal. At. Spectrom.,16(2001), 575-580.
51. D. Wallschlager, and R. Roehl, J. Anal. At. Spectrom., 16(2001), 922-925.
52. S.D Lofthouse, G.M. Greenway and S.C. Stephen, J. Anal. At. Spectrom., 14(1999), 1839-1842.
53. E.L. Seibert, V.L. Pressler, D. Pozebon, A.J. Curtius, Spectrochim. Acta.B, 56(2001), 1963-1971.
54. M. Nicolai, C. Rosin, N. Tousset, Y. Nicolai, Talanta, 50(1999), 433-444.
55. V. L. Dressler, D. Pozebon, and J. Curtius, Spectrochim. Acta.B, (1998), 1524-1539.
56. 依日光, 離子交換薄膜工學, 復漢出版社(1999).
57. 王學松, 膜分離技術及其應用, 科學出版社(1994).
58. K.E Jarvis, A.L. Gray and R.S. Houk, “Handbook of Inductively Coupled Plasma Spectrometry”, Chapman and Hall, New York(1989).
59. A. Montaser, “Inductively Coupled Plasma Mass Spectrometry”, Wiley-VCH, New York(1998).
60. Dubuisson, C. Poussel, and E.Mermnnnet, J. Anal. At. Spectrom., 12(1997), 281.
61. J.A. Mclean, H. Zhang, and A. Montaser, Anal. Chem., 70(1998), 1012-1020.
62. T.H. Handley, and J. A. Dean, Anal. Chem., 34(1962), 1312-1315.
63. T.H. Handley, Anal. Chem., 35(1963), 991-995.
64. R. Ma, and F. Adams, Anal. Chim. Acta, 317(1995), 215-222.
65. D. Pozebon, V.L. Dressler, and A.J. Curtius, Anal. Chim. Acta, 438(2001), 215-225.
66. M.A.M.D. Silva, and V.L.A. Frescura, Spectrochim. Acta.B, 55(2000), 803-813.
67. M.A.M.D. Silva, V.L.A. Frescura, F.N. Aguilera and A.J. Curtius, J. Anal. At. Spectrom., 13(1998), 1369-1373.
68. D.A. Skoog, D.M. West and F.T. Holler, “ Fundamentals of analytical chemistry”, Saunders college publishing(1991).
69. D.R. Wiederin and R.S. Houk, Appl. Spectrosc., 45(1991), 1408.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊