( 您好!臺灣時間:2022/08/12 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Correlation between functional MRI signal and reaction time
外文關鍵詞:FMRIhemodynamic responseFWHMcognitive eventsreaction time
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:2
功能性磁振造影對於偵測血動力學反應有很高的空間及時間解析度,功能性磁振造影和心理物理學上的參數作相關聯將更有能力了解神經活動過程。本研究的目的是為了要觀察檢驗功能性磁振造影反應的參數是如何隨著行為結果的測量值( 例如: 反應時間) 而改變。我們利用兩種不同頻率的真字及假字作為材料來進行字彙判斷作業,造成不同的反應時間,去探討其中的關係。在左腦下額葉區域,對於高頻字其活化體積小於低頻字與假字(587 ±261 vs. 3280 ±822立方厘米, 587 ±261 vs. 2025 ±548 立方厘米 ),和反應時間有很好的相關性(417 ±9 vs. 631 ±22 毫秒, 417 ±9 vs. 658 ±15 毫秒 )。在左腦下額葉區域,觀察到反應時間和功能性磁振造影反應中的全寬半高有線性關係(p<0.001)。而在反應時間和血動力學反應的起始時間並沒有顯著的相關性。這個發現意味著當執行字彙判斷作業時,左腦下額葉區域在反應時間中持續地活化。相對地,在作業結束後,與按鈕動作反應相關的左腦主要運動皮質區,其功能性磁振造影反應中的全寬半高和反應時間並無相關性。我們的結果也與字彙判斷作業的功能模式相符。因此,在認知過程中不同的神經活動可以經由功能性磁振造影血動力學反應被偵測到而加以區別。在此次研究中,我們證明了時間解析的功能性磁振造影技術的能力,即使反應時間在數百毫秒的認知事件,也能藉由追蹤功能性磁振造影反應而加以探討開發。

Functional magnetic resonance imaging (fMRI) detects hemodynamic responses with high spatial and temporal resolution. Capabilities of correlating psychophysical parameters with fMRI allow a better understanding of the neuronal processes. The objective of this study is to examine how fMRI BOLD response parameters vary with behavioral outcome measures (e.g. reaction time). We utilized a lexical decision task with two character-frequency levels and pseudocharaters. In the left inferior frontal lobe, the activation volumes were smaller to high-frequency characters than to low-frequency characters and pseudocharacters (587±261 vs. 3280±822 mm3, 587±261 vs. 2025±548 mm3 ), which is correlated well with the reaction times (417±9 vs. 631±22 ms, 417±9 vs. 658±15 ms ). The linear correlation between the measured reaction times and FWHM (full width half maximum) of the fMRI responses was also observed in the left inferior frontal lobe (p<0.001). There was no significant correlation between reaction time and onset time of the hemodynamic response. These findings imply left inferior frontal lobe is active during the entire reaction time when executing the lexical decision task. Conversely, the FWHM of fMRI responses in the left primary motor cortex (M1) related to pressing a button for responding at the end of task is not correlated to reaction time. Our results are also coherent with respect to a functional model of lexical decision task. Thus, the different patterns of neuronal activity during the cognitive process could be detected and distinguished through the fMRI hemodynamic responses. In this study, we have demonstrated that the time-resolved fMRI technique has the capacity to exploit the cognitive events by tracing in the temporal responses of fMRI, even if the reaction time is at the time scale of hundred milliseconds.

Title page Ⅰ
Acknowledgements Ⅱ
Abstracts Ⅲ
Table of Contents Ⅵ
List of Tables Ⅶ
List of Figures Ⅷ
Ⅰ. Introduction 1
A.Background and Literature Review
B.Hypothesis and Specific Aims
Ⅱ. Materials and Methods 7
B.Stimulus Materials and Paradigm Design
C.MR Acquisition
D.Data Analysis
Ⅲ. Results 13
A. Behavioral Data
B. FMRI Data
C. Comparison Between Reaction Time and FMRI
Response Time Course
Ⅳ. Discussion 17
Ⅴ. Conclusion and Future Directions 22
Ⅵ. References 43
Ⅶ. VITA 48

Alexander, G.E. and Crutcher, M.D. 1990 Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey J. Neurophysiol. 64: 164-178.
Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., and Hyde, J. S. 1992 Time course EPI of human brain function during task activation. Magn. Reson. Med. 25: 390-397.
Blamire, A.M., Ogawa, S., Ugurbil, K., Rothman, D., McCarthy G., Ellermann, J.M., Hyder, F., Rattner, Z. and Shulman, R.G. 1992 Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acd Sci USA 89: 11069-11073.
Boynton, G.M., Engel, S.A., Glover, G.H. and Heeger, D.J. 1996 Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16: 4207-4221.
Buckner, R.L. Bandettini, P.A., O’Craven, K.M., Savoy, R.L., Petersen, S.E., Raichle, M.E. and Rosen, B.R. 1996 Detection of cortical activation during averaged single trial of cognitive task using functional magnetic resonance images. Proc Natl Acd Sci USA 93: 14878-14883.
Carpenter P.A., Just M. A., Keller T.A., Eddy W. and Thulborn K.R. 1999 Time course of fMRI-activation in language and spaitial networks during sentence comprehension. NeuroImage 10: 216-224.
Chee, M. W., Tan, E., and Thiel, T. 1999 Madarin and English single word processing studies with functional magnetic resonance imaing. J. Neurosci. 19:3050-3056.
Chee, M. W., Weekes, B., Lee, K. M. Soon, C. S., Schreiber, A., Hoon, J. J., and Chee, M. 2000 Overlap and dissociation of semantic processing of Chinese characters, English words, and pitures: Evidence from fMRI. NeuroImage 12: 392-403.
Chee, M. W., Hon, N., Caplan, D., Lee, H. L. and Goh, J. 2002 Frequency of concrete words modulates prefrontal activation during semantic judgments. NeuroImage 16: 259-168.
Clark, V.P., Maisog, J.A. and Haxby, J.V. 1998 fMRI study of face perception and memory using random stimulus sequences. J. Neurophysiol. 79: 3257-3265.
Fox, P.T., Perlmutter J.S. and Raichle ME. 1985 A stereotactic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr. 9:141-153.
Fox, P.T., Mintum, M.A., Raichle, M.E., Meizin, F.M., Allman, J.M. and Van Essen, D.C. 1986a Mapping human visual cortex with positron emission tomography. Nature (London) 323:806-809.
Fox, P.T. and Raichle, M.E. 1986b Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acd Sci USA 83:1140-1144.
Fox, P.T., Raichle, M.E., Mintum, M.A. and Dence,C. 1988 Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462-464.
Georgopoulos, A.P. and Pellizzer, G. 1995 The mental and the neural: psychological and neural studies of mental rotation and memory scanning. Neuropsychologia 33: 1531-1547.
Henson, R. N. A., Shallice, T., Price, C.J., Dolan, R. J., Friston, K. and Turner, R. 1999 Lexical decision: Differences in magnitude and onset as indexed by event-related fMRI. NeuroImage 9: 1044.
Henson, R. N. A., Price, C.J., Rugg, M. D., Turner, R. and Friston, K. J. 2002 Detecting latency differences in event-related BOLD responses: Application to words versus nonwords and initial versus repeated face presentation. NeuroImage 15: 83-97.
Jessen, F., Erb, M., Klose, U., Lotze, M., Grodd., W. and Heun., R. 1999 Activation of human language processing brain regions after the presentation of random letter strings demonstrated with event-related functional magnetic resonance imging. Neuroscience Letters 270: 13-16.
Just M. A., Carpentar P.A., Keller T.A., Eddy W. and Thulborn K.R. 1996 Brain activation modulated by sentence comprehension. Science 274: 114-116.
Kim, S-G., Rither, W. and Ugurbil, K. 1997 Limitations of temporal resolution in functional MRI. Magn. Reson. Med. 37: 631-636.
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, B., Cheng, H. M., Brandy, T. J., and Rosen, B.R. 1992 Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acd Sci USA 89: 5675-5679.
Lancaster J.L., Rainey L.H., Summerlin J.L., Freitas C.S., Fox P.T., Toga A.W. and Mazziotta J.C. 1997 Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transformation method. Hum. Brain Mapp.5: 238-242.
Lancaster J.L., Fox P.T., Downs H., Nickerson D.S., Hander T.A., Mallah M.E., Kochunov P.V. and Zamarripa K. 1999 Global spatial normalization of human brain using convex halls. J. Nucl. Med.40: 942-955.
McCarthy G., Luby M., Gore J. and Goldman-Rakic P. 1997 Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J Neurophysiol 77: 1630-1634.
Menon, R.S. and Kim, S-G. 1999 Spatial and temporal limits in fMRI. Trends in Cognitive Sciences 3: 207-216.
Menon, R.S., Luknowsky, DL and Dale and Gati, J.S. 1998 Mental chronometry using latency-resolved functional magnetic resonance imaging. Proc Natl Acd Sci USA 95: 10902-10907.
Ogawa, S., Lee, T.M., Nayak, A.S. and Glynn P. 1990a Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14: 68-78.
Ogawa, S. and Lee, T.M. 1990b Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation.
Magn Reson Med 16: 9-18.
Ogawa, S., Lee, T.M., Kay, A.R. and Tank, D.W. 1990c Brain magnetic resonance imging with contrast dependent on blood oxygenation. Proc Natl Acd Sci USA 87: 9868-9872.
Ogawa, S., Tank, D.W., Menon, R., Ellermann, J. M., Kim, S-G., Merkle, H., and Ugurbil, K. 1992 Intrisic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acd Sci USA 88: 5951-5955.
Ogawa, S., Menon, R.S., Kim, S-G and Ugurbil, K. 1998 On the characteristic of functional magnetic resonance imaging of the brain. Annu. Rev. Biophys. Biomol. Struct. 27: 447-474.
Price, C.J., 2000 The functional anatomy of language: contributions from neuroimage. J. Anat. 197: 335-359.
Richter, W., Ugurbil, K., Georgopoulos, A.P. and Kim, S-G. 1997 Time-resolved fMRI of mental rotation. NueroReport 8: 3697-3702.
Richter, W., Somorjai, R., Summers, R., Jarmasz, R., Menon, R.S., Gati, J.S., Georgopoulos, A.P., Tegeler, C., Ugurbil, K. and Kim, S-G. 2000 Motor area activity during mental rotation studied by time-resolved single-trial fMRI. J. Cogn. Neurosci. 12:310-320.
Röder, B., Stock, O., Neville H., Bien, S and Rösler, F. 2002 Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: a functional magnetic resonanceimage study NeuroImage 15: 1003-1014.
Rosen, B. R., Bunkner, R. L., and Dale, A.M. 1998 Event-related functional MRI: past, present, and future. Proc Natl Acd Sci USA 95: 773-780.
Talairach, J., and Tournoux, P. 1988 Co-planar Stereotactic Atlas of the Human Brain. Theime Medical, New York.
Tan, L. H., C. A., Spinks, Gao, J. H., Liu, H. L., Perfetti, J. A., Xiong, J., Stofer, K. A., Pu, Y., Liu, Y., and Fox, P. T. 2000 Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum. Brain Mapp.10: 16-27.
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., and Gao, J. H. 2001 The Neural system underlying Chinese logograph reading. NeuroImage 13: 836-846.
Thierry, G., Boulanouar, K., Kherif, F., Ranjeva, J. P. and Domoent, J.F. 1999 Temporal sorting of neural components underlying phonological processing. NeuroReport 10: 2599-2603.
Thulborn, K.R., Waterton, J.C., Matthews, P.M. and Radda G.K. 1982 Oxygenation dependence of transverse relaxation time of water protons in whole blood at high field. Biochim. Biophy. Acta 714: 265-270.
Wu, J-T. and Liu, I-M. 1997 Phonological activation in pronouncing characters. In Cognitive processing of Chinese and related Asian Languages(Chen,H-C Eds), pp. 47-65. Chinese University Press,Hong Kong.
Zarahn, E., Aguirre, G.K. and D’Esposito, M. 1997 A trial-based experimental design for fMRI. NeuroImage 6: 122-138.

第一頁 上一頁 下一頁 最後一頁 top