|
1. Rosenberg, S.A., Immunotherapy and gene therapy of cancer. Cancer Res, 1991. 51(18 Suppl): p. 5074s-5079s. 2. Hoover, H.C., Jr., et al., Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer, 1985. 55(6): p. 1236-43. 3. Fearon, E.R., et al., Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res, 1988. 48(11): p. 2975-80. 4. Gansbacher, B., et al., Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med, 1990. 172(4): p. 1217-24. 5. Curti, B.D., et al., Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res, 1993. 53(10 Suppl): p. 2204-7. 6. Akiyoshi, T., [Cancer vaccine therapy using peptides derived from tumor-rejection antigens]. Gan To Kagaku Ryoho, 1997. 24(5): p. 511-9. 7. Saenz-Badillos, J., S.P. Amin, and R.D. Granstein, RNA as a tumor vaccine: a review of the literature. Exp Dermatol, 2001. 10(3): p. 143-54. 8. Schumacher, K., Keyhole limpet hemocyanin (KLH) conjugate vaccines as novel therapeutic tools in malignant disorders. J Cancer Res Clin Oncol, 2001. 127 Suppl 2: p. R1-2. 9. Dummer, R., et al., Immune stimulatory potential of B7.1 and B7.2 retrovirally transduced melanoma cells: suppression by interleukin 10. Br J Cancer, 1998. 77(9): p. 1413-9. 10. Donnelly, J.J., et al., DNA vaccines. Annu Rev Immunol, 1997. 15: p. 617-48. 11. Gurunathan, S., D.M. Klinman, and R.A. Seder, DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol, 2000. 18: p. 927-74. 12. Chow, Y.H., et al., Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol, 1998. 160(3): p. 1320-9. 13. Haupt, K., M. Roggendorf, and K. Mann, The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med (Maywood), 2002. 227(4): p. 227-37. 14. Kuwabara, H., H. Uda, and I. Takenaka, Immunohistochemical detection of sialosyl-Tn antigen in carcinoma of the prostate. Br J Urol, 1997. 80(3): p. 456-9. 15. Murphy, G.P., et al., Use of artificial neural networks in evaluating prognostic factors determining the response to dendritic cells pulsed with PSMA peptides in prostate cancer patients. Prostate, 2000. 42(1): p. 67-72. 16. Slovin, S.F., et al., Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5710-5. 17. Zier, K.S. and B. Gansbacher, Tumour cell vaccines that secrete interleukin-2 (IL-2) and interferon gamma (IFN gamma) are recognised by T cells while resisting destruction by natural killer (NK) cells. Eur J Cancer, 1996. 32A(8): p. 1408-12. 18. Lodge, P.A., et al., Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res, 2000. 60(4): p. 829-33. 19. Bowden, C.J., et al., A phase I/II study of continuous infusion suramin in patients with hormone-refractory prostate cancer: toxicity and response. Cancer Chemother Pharmacol, 1996. 39(1-2): p. 1-8. 20. Ablin, R.J., A retrospective and prospective overview of prostate-specific antigen. J Cancer Res Clin Oncol, 1997. 123(11-12): p. 583-94. 21. Eder, J.P., et al., A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res, 2000. 6(5): p. 1632-8. 22. Small, E.J., et al., Therapy of advanced prostate cancer with granulocyte macrophage colony-stimulating factor. Clin Cancer Res, 1999. 5(7): p. 1738-44. 23. Hung, K., et al., The central role of CD4(+) T cells in the antitumor immune response. J Exp Med, 1998. 188(12): p. 2357-68. 24. Dranoff, G., et al., Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3539-43. 25. Liu, H.M., et al., Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood, 1998. 92(10): p. 3730-6. 26. Sin, J.I., et al., Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur J Immunol, 1998. 28(11): p. 3530-40. 27. Rissoan, M.C., et al., Reciprocal control of T helper cell and dendritic cell differentiation. Science, 1999. 283(5405): p. 1183-6. 28. Pulendran, B., et al., Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A, 1999. 96(3): p. 1036-41. 29. Kusakabe, K., et al., The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. J Immunol, 2000. 164(6): p. 3102-11. 30. Simons, J.W., et al., Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res, 1999. 59(20): p. 5160-8. 31. Ulmer, J.B., et al., Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 1993. 259(5102): p. 1745-9. 32. Wei, C., et al., Expression of human prostate-specific antigen (PSA) in a mouse tumor cell line reduces tumorigenicity and elicits PSA-specific cytotoxic T lymphocytes. Cancer Immunol Immunother, 1996. 42(6): p. 362-8. 33. Correale, P., et al., In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst, 1997. 89(4): p. 293-300. 34. Wei, C., et al., Tissue-specific expression of the human prostate-specific antigen gene in transgenic mice: implications for tolerance and immunotherapy. Proc Natl Acad Sci U S A, 1997. 94(12): p. 6369-74. 35. Overwijk, W.W., et al., Vaccination with a recombinant vaccinia virus encoding a "self" antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2982-7. 36. Johnson, M.A., et al., Isolation and characterization of mouse probasin: An androgen-regulated protein specifically expressed in the differentiated prostate. Prostate, 2000. 43(4): p. 255-62.
|