跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/09 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀柏享
研究生(外文):Chi, Po-Hsiang
論文名稱:以感應耦合電漿質譜法進行半導體材料中微量元素之固體直測分析及濃度縱深分佈之研究
論文名稱(外文):Development of direct solid analysis and depth profiling technique using ICP-MS for the determination of trace elements in semiconductor materials
指導教授:楊末雄楊末雄引用關係
指導教授(外文):Yang, Mo-Hsiung
學位類別:博士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:126
中文關鍵詞:半導體材料感應耦合電漿質譜法雷射剝蝕陽極氧化微量元素固體直測縱深分析同位素稀釋法
外文關鍵詞:semiconductor materialICP-MSlaser ablationanodic oxidationtrace elementdirect solid analysisdepth profilingisotope dilution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用感應耦合電漿質譜法(Inductively coupled plasma mass spectrometry, ICP-MS)針對半導體材料中之微量元素,分別發展固體直測與濃度縱深分佈之分析技術。在固體直測技術部分,利用雷射剝蝕取樣裝置(Laser ablation, LA)連接ICP-MS之分析系統,進行光阻薄膜中微量金屬不純物及矽晶圓中硼摻雜物之固體直測分析。另外在濃度縱深分佈技術部分,則是利用陽極氧化技術(Anodic oxidation)配合ICP-MS之分析系統,發展矽晶圓中微量金屬不純物的濃度縱深分佈之分析技術。
本論文分為三個部分。第一部份係以雷射剝蝕感應耦合電漿質譜法(LA-ICP-MS)進行光阻膜中微量金屬不純物的薄膜直測分析。研究中嘗試以自製薄膜標準品,來克服標準品不易取得的困難,並評估此分析技術應用於光阻薄膜分析之可行性。第二部分則是以雷射剝蝕取樣器與溶液霧化裝置結合之雙樣品導入系統,配合LA-ICP-MS進行矽晶圓中硼摻雜物之固體直測分析技術。研究中建立以線上同位素稀釋法取代傳統固體標準品之定量技術,並實際應用於矽晶圓中硼摻雜物之分析,其方法偵測極限可低達2.8E15 atoms cm-3。最後一部份則是利用陽極氧化技術配合ICP-MS之分析系統,發展矽晶圓中微量金屬不純物的濃度縱深分佈之分析技術,並將其實際應用於經熱擴散之污染矽晶圓內金屬不純物的縱深濃度分佈之研究。由所得結果顯示,表面污染之矽晶圓於900oC加熱5小時後,其晶圓內部之金屬不純物的濃度分佈由隨深度增加而減少的趨勢,各待測元素(Cu、Zn、Cr、Co及Ni)的偵測極限約可達1.0E15 ~ 9.4E15 atoms cm-3之程度。
The present work is aimed at development of direct solid analysis and depth profiling using inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace elements in semiconductor materials including photoresist samples and silicon wafers. There consists of three parts in this work. Firstly, a high-throughput method involving laser ablation - inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed for the determination of critical elements in the semiconductor photoresist samples. An innovative procedure was developed for preparation of artificial photoresist film standards to be used for calibration in the direct analytical process. Secondly, a dual sample introduction system of laser ablation and solution nebulization coupling to ICP-MS using on-line isotope dilution technique for the determination of boron in p-type silicon wafer was developed. The rapidly changed boron ratio is recorded by ICP-MS during analysis for subsequent quantification of the boron concentration based on isotope dilution technique. With this on-line isotope dilution method, it is possible to accurately quantify boron concentration in silicon wafer without reference to solid standard sample. Finally, a method for determination of concentration gradient of trace levels of transition metals (Cu, Zn, Cr, Co and Ni) in silicon wafer using anodic oxidation combined with microconcentric nebulizer equipped inductively coupled plasma mass spectrometry (MCN-ICP-MS) was developed. From the preliminary study on a silicon wafer polluted with trace transition metals, it indicated that a general trend showing decreasing of analyte concentration with increasing depth, in good agreement with the literature reports, was obtained. The established system of anodic oxidation combined with MCN-ICP-MS can be an effective means for the determination of concentration gradient of trace metals in silicon wafer.
Chapter 1:Introduction
1.1 Effect of trace elements in semiconductor devices
1.2 Research purposes of this study
1.3 Methodological development of LA-ICP-MS
1.4 Methodological development of anodic oxidation
1.5 The contents of this thesis
1.6 References
List of Tables
List of Figures
Chapter 2:Direct Impurity Analysis for Semiconductor Photoresist Samples with Laser Ablation ICP-MS
Abstract
2.1 Introduction
2.2 Experimental
2.3 Results and discussion
2.4 References
Tables
Figures
Chapter 3: Determination of Boron in Silicon Wafer by Laser Ablation Inductively Coupled Plasma Mass Spectrometry Using On-line Isotope Dilution Technique
Abstract
3.1 Introduction
3.2 Experimental
3.3 Results and discussion
3.4 Conclusion
3.5 References
Tables
Figures
Chapter 4:Development of anodic oxidation combined with inductively coupled plasma mass spectrometry for the determination of concentration gradient of trace metals in silicon wafer
Abstract
4.1 Introduction
4.2 Experimental
4.3 Results and discussion
4.4 Conclusion
4.5 References
Tables
Figures
Chapter 5:Conclusions
1. S. M. Sze, in Semiconductor Devices, Physics and Technology, Wiley, New York, 1985.
2. W. R. Runyan and K. E. Bean, in Semiconductor Integrated Circuit Processing Technology, Addison Wesley, USA, 1990.
3. C. Y. Chang and S. M. Sze, in ULSI Technology, McGraw-Hill, USA, 1996.
4. L. Fabry, S. Pahlke, L. Kotz, and G. Tolg, Fresenius J. Anal. Chem., 1994, 349, 260.
5. A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. A, 2000, 70, 489.
6. M. Y. Wang, F. H. Ko, T. K. Wang, C. C. Yang, and T. Y. Huang., J. Electrochem. Soc., 1999, 146, 3455.
7. S. M. Sze, in VLSI Technology, McGraw-Hill, New York, 1988, Chapter 7.
8. L. F. Thompson, C. G. Willson, and M. J. Bowden, in Introduction to Microlithography, ACS, Washington, 1994, Chapter 4.
9. K. Graff, in Metal Impurities in Silicon-Device Fabrication, Springer, Berlin, 1995, Chapter 1ƀ.
10. M. Horn, and K. G. Heumann, Fresenius’ J. Anal. Chem., 1994, 350, 286.
11. M. Grasserbauer, and G. Stingeder, Fresenius’ J. Anal. Chem., 1990, 337, 701.
12. E. R. Weber, Appl. Phys. A, 1983, 30, 1.
13. A. A. Istratov, and E. R. Weber, Appl. Phys. A, 1998, 66, 123.
14. J. P. Joly, Microelectronic Engineering, 1998, 40, 285.
15. J. M. Hwang and D. K. Schroder, J. Appl. Phys., 1986, 59, 2476
16. T. Ono, A. Romanowski, E. Asayama, H. Horie, K. Sueoka, H. Tsuya, and G. A. Rozgonyi, J. Electrochem. Soc., 1999, 146, 3461.
17. D. Gunther, S. E. Jackson, and H. P. Longerich, Spectrochim. Acta Part B, 1999, 54, 381.
18. C. Bendicho, and M. T. C. de Loos-Vollebregt, J. Anal. At. Spectrom., 1991, 6, 353.
19. E. Grallath, P. Tschopel, G. Kolblin, U. Stix and G. Tolg, Fresenius Z. Anal. Chem. 1980, 302, 40.
20. M. Saito, Spectrochim. Acta Part B, 1995, 50, 171
21. H. J. Kim, S. K. Choi, K. B. Lee, H. S. Kim, and G. H. Lee, Anal. Sci., 1996, 12, 307.
22. A. Scheeline, and D. M. Coleman, Anal. Chem., 1987, 59, 1185A
23. L. Blain, E. D. Salin, and D. W. Boomer, J. Anal. At. Spectrom., 1989, 4, 721.
24. C. J. Park, and G. E. M. Hall, J. Anal. At. Spectrom., 1987, 2, 473.
25. S. Boonen, P. Verrept, L. J. Moens, and R. F. J. Dams, J. Anal. At. Spectrom., 1993, 8, 711
26. D. C. Gregoire, N. J. Miller-Ihli, and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 605.
27. F. Vanhaecke, S. Boonen, L. Moens and R. Dams, J. Anal. At. Spectrom., 1995, 10, 81.
28. L. Moens, P. Verrept, S. Boonen, F. Vanhaecke, and R. Dams, Spectrochim. Acta Part B, 1995, 50, 463.
29. N. Jakubowski, I. Feldmann, and D. Steuwer, Spectrom. Acta Part B, 1995, 50, 639.
30. R. L. V. Hoven, S. H. Nam, A. Montaser, M. W. Doughten, and A. F. Dorrzapf, Spectrochim. Acta Part B, 1995, 50, 549.
31. L. Moenke-Blankenburg, Spectochim. Acta Rev., 1993, 15, 1.
32. S. A. Darke, and J. F. Tyson, J. Anal. At. Spectrom., 1993, 8, 145.
33. S. F. Durrant, J. Anal. At. Spectrom., 1999, 14, 1385.
34. L. Moenke-Blankenburg, Laser Micro Analysis, Vol. 105 in Chemical analysis─A series of Monographs on Analytical Chemistry and its Applications, Eds J. D. Winefordner, and I. M. Kolthoff, John Wiley & Sons, New York, 1989.
35. R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, A. L. Gray, and C. E. Taylor, Anal. Chem., 1980, 52, 2283.
36. A. L. Gray, Analyst, 1985, 110, 551.
37. T. E. Jeffries, W. T. Perkins, and N. J. G. Pearce, Analyst, 1995, 120, 1365.
38. D. Gunther, and C. A. Heinrich, J. Anal. At. Spectrom., 1999, 14, 1369.
39. M. L. Alexander, M. R. Smith, J. S. Hartman, A. Mendoza, and D. W. koppenaal, Appl. Surf. Sci., 1998, 129, 255.
40. V. Kanicky, J. Musil, and J. J.-M. Mermet, Appl. Spectrosc., 1997, 51, 1037.
41. W. T. Perkins, N. J. G. Pearce, and R. Fuge, J. Anal. At. Spectrom., 1992, 14, 611.
42. S. A. Baker, M. J. Dellavecchia, B. W. Smith, and J. D. Winefordner, Anal. Chim. Acta, 1997, 355, 113.
43. T. Mochizuki, A. Sakashita, H. Iwata, T. Kagaya, T. Shimamura, and P. Blair, Anal. Sci., 1988, 4, 403.
44. J. W. Hanger, Anal. Chem., 1989, 61, 1243.
45. E. F. Cromwell, and P. Arrowsmith, Anal. Chem., 1995, 67, 131.
46. F. E. Lichte, Anal. Chem., 1995, 67,2479.
47. J. G. Williams, and K. E. Jarvis, J. Anal. At. Spectrom., 1993, 8, 25.
48. S. E. Jackson, H. P. Longerich, G. R. Dunning, and B. J. Fryer, Can. Mineral., 1992, 30, 1049.
49. C. A. Morrison, D. D. Lambert, R. J. S. Morrison, W. W. Ahlers, and I. A. Nicolles, Chem. Geol., 1995, 119, 13.
50. X. Guo, and F. E. Lichte, Analyst, 1995, 120, 2707
51. A. Raith, R. C. Hutton, I. D. Abell, and J. Crighton, J. Anal. At. Spectrom., 1995, 10, 591.
52. P. Arrowsmith, Anal. Chem., 1987, 59, 1437.
53. H. Yasuhara, T. Okano, and Y. Matsumura, Analyst, 1992, 117, 395.
54. P. M. Outridge, and R. D. Evans, J. Anal. At. Spectrom., 1995, 10, 595.
55. A. Raith, W. T. Perkins, N. J. G. Pearce, and T. E. Jeffries, Fresenius’ J. Anal. Chem., 1996, 355, 789.
56. R. S. Chenery, T. Williams, T. A. Elliott, L. P. Forey, and L. Werdelin, Mikrochim. Acta. Suppl., 1996, 259.
57. A. Cox, F. Keenan, M, Cooke, and J. Appleton, Fresenius’ J. Anal. Chem., 1996, 354, 254.
58. D. Gunther, H. Cousin, B. Magyar, and I. Leopold, J. Anal. At. Spectrom., 1997, 12, 165.
59. C. F. Wang, S. L. Jeng, and F. J. Shieh, J. Anal. At. Spectrom., 1997, 12, 61.
60. R. J. Walting, B. F. Lynch and D. Herring, J. Anal. At. Spectrom., 1997, 12, 195.
61. M. Gastel, J. S. Becker, G. Kuppers, and H. -J. Dietze, Spectrochim. Acta Part B, 1997, 52, 2051.
62. C. Leloup, P. Marty, D. Dall’ava, and M. Perdereau, J. Anal. At. Spectrom., 1997, 12, 945.
63. R. E. Wolf, C. Thomas, and A. Bohlke, Appl. Surf. Sci., 1998, 129, 299.
64. P. L. Buldini, A. Mevoli, and J. L. Sharma, Talanta, 1998, 47, 203.
65. I. E. Vasilyeva, E. V. Shahanova, Y. V. Sokolnikova, O. A. Prodakova, and V. I. Lozhkin, J. Anal. At. Spectrom., 1999, 14, 1519.
66. F. Li, M. K. Balazs, and R. Pong, J. Anal. At. Spectrom., 2000, 15, 1139.
67. M. Seo, K. Fushimi, H. Takahashi, and K. Aotsuka, J. Electroanal. Chem., 1994, 368, 257.
68. M. Shimura, M. Katsuma, T. Chikuma, and T. Okumura, J. Appl. Electrochem., 1999, 29, 1177.
69. M. Yuga, M. Ohyama, and M. Takeuchi, Electrochem., 2000, 68, 575.
70. G. Mende, H. Flietner, and M. Deutscher, J. Electrochem. Soc., 1993, 140, 188.
71. A. H. M. Kamal, S. Nomura, and T. Endoh, J. Electrochem. Soc., 1994, 141, 2227.
72. M. Grecea, C. Rotarn, N. Nastase, and G. Cracium, J. Molecular Structure, 1999, 480-481, 607.
73. E. Guerrero, J. Machel, and G. Tobolka, Thin Solid Films, 1978, 53, L1.
74. G. C. Jain, A. Prasad, and B. C. Chakravarty, J. Electrochem. Soc., 1979, 126, 89.
75. P. F. Schmidt, and W. Michel., J. Electrochem. Soc., 1957, 104, 230.
76. C. R. Lan, and M. H. Yang, Silicon Materials Research Program Monograph Series, 1986, 1, 53.
77. J. Rappich, Microelectronics Reliability, 2000, 40, 815.
78. J. A. Bardwell, N. Praper, and P. Schmuki, J. Appl. Phys., 1996, 79, 8761.
79. M. Croset, E. Petreanu, D. Samuel, G. Amsel, and J. P. Nadai, J. Electrochem. Soc., 1971, 118, 717.
80. J. Borany, G. Mende, B. and B. Schmidt, Nucl. Instr. Meth., 1983, 212, 65.
81. H. Hasegawa, S. Arimoto, S. Nunjo, H. Yamamoto, and H. Ohno, J. Electrochem. Soc., 1988, 135, 424.
82. H. Hasegawa, S. Arimoto, S. Nunjo, H. Yamamoto, and H. Ohno, J. Electrochem. Soc., 1988, 135, 431.
83. P. Lenza, and P. L. Buldini, Anal. Chim. Acta, 1979, 104, 139.
84. K. Tsujii, and E. Kitazume, Anal. Chim. Acta, 1981, 125, 101.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top