跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭殷銘
研究生(外文):Yin-Ming Kuo
論文名稱:銫在粉碎花崗岩中宿命與傳輸模式之建立
論文名稱(外文):Modeling the fate and transport of cesium in crushed granite
指導教授:鄭懷平
指導教授(外文):Hwai-Ping Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:78
中文關鍵詞:粉碎花崗岩雙吸附元Langmuir動力反應模式流動/滯留傳輸模式多階段管柱實驗
外文關鍵詞:cesiumcrushed granitetwo-site Langmuir kinetic modelmobile/immobile transport modelmulti-stage column tests
相關次數:
  • 被引用被引用:3
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
摘要
基於實驗觀察與分析以建構合適的反應性傳輸模式,使能有效地模擬放射性核種的宿命與傳輸行為,乃評估放射性廢料地下處置場安全性的必要工具。本研究的目的在於經由一系統的分析來建立適合的評估模式,用以探討銫於粉碎花崗岩組成之多孔隙介質中的宿命與傳輸。所採用的液相包括合成地下水與合成海水。為建立此一模式,本研究對固相進行比表面積測量(N2-BET)、x-光粉末繞射、偏光顯微/放射照相、固相消化分析,並加上批次實驗與多階段(mutli-stage)平流-延散管柱實驗,希望能將銫主要的宿命與傳輸機制決定出來,繼而對假設的模式進行驗證。依據固相分析與批次實驗結果,成功地以一雙吸附元Langmuir動力模式描述銫於合成地下水環境中在粉碎花崗岩的動力吸/脫附行為。另根據對非反應性氚水管柱實驗結果的分析,提出一包含流動帶與滯留帶液相的傳輸模式,藉以描述管柱系統中主要的傳輸過程。然而,結合此二模式而架構的反應性傳輸模式,並無法對多階段管柱實驗中銫的結果提供滿意的擬合。因此有必要在未來對此模式作進一步的修正。因而,建議先修改現行的管柱裝置,減少管柱連出端體積,以將因此體積所導致的額外延、擴散減到最小,期能針對主要的傳輸行為進行有效地分析。此外,也有必要藉由更多實驗來繼續深入探討不同核種在管柱中的反應機制與傳輸行為。
ABSTRACT
In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N2-BET, x-ray diffraction (XRD), polar-microscopy/auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted.
CONTENTS
Chapter 1 INTRODUCTION 1
Chapter 2 EXPERIMENTS 6
2.1. Materials 6
2.2. Solid phase analysis 7
2.2.1. N2-BET measurement 7
2.2.2. X-ray diffraction 7
2.2.3. Polar-microscopy/auto-radiography 7
2.2.3.1. Theoretical background 7
2.2.3.2 Procedures 8
2.3. Batch tests 9
2.3.1. Theoretical background 9
2.3.1.1. Sorption model 10
2.3.1.2. Numerical solution 11
2.3.2. Procedures 12
2.3.2.1. Pre-equilibrium 12
2.3.2.2. Sorption 13
2.3.2.3 Desorption 14
2.4. Column tests 15
2.4.1. Theoretical background 15
2.4.1.1. Governing equations 15
2.4.1.2. Numerical solutions 16
2.4.2. Procedures 17
2.4.2.1. Pre-equilibrium 18
2.4.2.2. Non-reactive tracer tests 18
2.4.2.3. Multi-stage advection-dispersion column tests 19
Chapter 3 RESULTS AND DATA ANALYSIS 25
3.1. Solid phase analysis 25
3.1.1. N2-BET measurement 25
3.1.2. X-ray diffraction 25
3.1.3. Polar-microscopy/auto-radiography 26
3.2. Pre-equilibrium 27
3.2.1. Pre-equilibrium for batch tests 27
3.2.2. Pre-equilibrium for column tests 28
3.3. Batch tests 28
3.3.1. Sorption and desorption in SGW 28
3.3.2. Sorption and desorption in SSW 29
3.4. Column tests 30
3.4.1. The BTCs of HTO 30
3.4.2. The BTCs of Na-22 31
3.4.2.1. The BTCs of Na-22 in SGW columns 31
3.4.2.2. The BTCs of Na-22 in SSW columns 32
3.4.3. The BTCs of Cs-137 32
3.4.3.1. The BTCs of Cs-137 in SGW columns 33
3.4.3.2. The BTCs of Cs-137 in SSW columns 33
Chapter 4 DISCUSSION 67
4.1. Characterization of Cs sorption/desorption 67
4.2. Identification of transport processes 69
4.3. Validation of reactive transport models 72
Chapter 5 CONCLUSIONS 77
REFERENCES
André, C., M. Sardin, P. Vitorge, and M. Fauré, 1998. Analysis of breakthrough curves of Np(V) in clayey sand packed column in terms of mass transfer kinetics. Journal of Contaminant Hydrology, 35, 161-173.
Boving, T. B., P. Grathwohl, 2001. Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. Journal of Contaminant Hydrology, 53, 85-100.
Bradbury, M. H., B. Baeyens, 2000. A generalized sorption model for the concentration dependent uptake of caesium by argillaceous rocks. Journal of Contaminant Hydrology, 42, 141-163.
Cheng, H. P., M. H. Li, and J. R. Cheng, 2002a. An assessment of using the predictor-corrector technique to solve reactive transport equations. International Journal for Numerical Methods in Engineering (in press).
Cheng, H. P., M. H. Li, and S. Li, 2002b. A sensitivity analysis of model selection in modeling the reactive transport of cesium in crushed granite. Journal of Contaminant Hydrology (in press).
Compère, F., G. Porel, and F. Delay, 2001. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. Journal of Contaminant Hydrology, 49, 1-21.
Cussler, E. L., 1997. Diffusion, mass transfer in fluid system. Cambridge University Press.
Fesch, C., W. Simon, S. B. Haderlein, P. Reichert, and R. P. Schwarzenbach, 1998. Nonlinear sorption and nonequilibrium solute transport in aggregated porous media: Experiments, process identification and modeling. Journal of Contaminant Hydrology, 31, 373-407.
Guha, H., J. E. Saiers, S. Brooks, P. Jardine, and K. Jayachandran, 2001. Chromium transport, oxidation, and adsorption in manganese-coated sand. Journal of Contaminant Hydrology, 49, 311-334.
Hemond, H. F. and E. J. Fechner, 1994. Chemical fate and transport in the environment, Academic Press.
Hölttä, P., M. Siitari-Kauppi, M. Hakanen, and V. Tukiainen, 2001. Attempt to model laboratory-scale diffusion and retardation data. Journal of Contaminant Hydrology, 47, 139-148.
Krumhansl, J. L., P. V. Brady, H. L. Anderson, 2001. Reactive barrier for 137Cs retention. Journal of Contaminant Hydrology, 47, 233-240.
Maraqa, M. A., R. B. Wallace, and T. C. Voice, 1997. Effects of degree of water saturation on dispersivity and immbile water in sandy soil columns. Journal of Contaminant Hydrology, 25, 199-218.
Ochs, M, M. Boonekamp, H. Wanner, H. Sato, and M. Yui, 1998. A quantitative model for ion diffusion in compacted bentonite. Radiochim. Acta, 82, 437-448.
Plassard, F., T. Winiarski, and M. Petit-Ramel, 2000. Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology, 42, 99-111.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical recipes in FORTRAN: the art of scientific computing. 2nd ed., Cambridge University Press.
Saiers, J. E., G. M. Hornberger, 1996. Migration of 137Cs through quartz sand: experimental results and modeling approaches. Journal of Contaminant Hydrology, 22, 255-270.
Steefel, C. I. and P. V. Cappellen, 1998. Reactive transport modeling of natural systems. Journal of Hydrology 209, 1-7.
Tachi, Y. T. Shibutani, H. Sato, and M. Yui, 1998. Sorption and diffusion behavior of selenium in tuff. Journal of Contaminant Hydrology, 35, 77-89.
Warwick, P. W., A. Hall, V. Pashley, N. D. Bryan, and D.Griffin, 2000. Modelling the effect of humic substances on the transport of europium through porous media: a comparison of equilibrium and equilibrium/kinetic models. Journal of Contaminant Hydrology, 42, 19-34.
Yeh, G. T., G. Iskra, J. M. Zachara, and J. Szecs'dy, 1998. Development and verifications of a mixed chemical kinetic and equilibrium model. Advances in Environmental Research, 2, 24-56.
Zhu, C., D. S. Burden, 2001. Mineralogical compositions of aquifer matrix as necessary initial conditions in reactive contaminant transport models. Journal of Contaminant Hydrology, 49, 145-161.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊