跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴滄禮
研究生(外文):Tsang-Li Tai
論文名稱:離散時間順滑模式控制器之設計與應用
論文名稱(外文):On the design of discrete-time sliding mode controller for a class of systems and its applications
指導教授:陳建祥
指導教授(外文):Jian-Shiang Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:142
中文關鍵詞:離散時間順滑模式控制階層式光學讀取頭不斷電系統
外文關鍵詞:discrete-timesliding mode controlhierarchicaloptical pick-up headUPS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:1
本文主要目的在於提出新的離散時間順滑模式控制器設計法則,以期改善傳統順滑模式控制器的性能與克服其在數位化之實際應用上所面臨的一些難題。因此本設計法則不但要求能夠確保順滑模式之產生、系統狀態軌跡於有限取樣週期到達預設順滑層,同時具有減輕或消除抖振現象之能力。
首先引進一輔助控制器設計概念,推導出其結合傳統順滑模式控制之穩定條件,依據此條件,控制器參數可以經由z-平面之極-零點配置法則來決定。只要適當選取此參數,即可使系統具有:單邊、無振盪的及準順滑模式響應行為。其次,針對一有界干擾之系統,提出一強健且平滑的順滑模式控制器設計技巧,並使用一平滑函數來替代傳統開關補償行為。在系統擁有強健性能之前提下,只需調整一控制器參數即可達成減輕或消除抖振現象之目的。故可以有效克服傳統順滑模式控制因過保守估測擾動量於實際應用上所衍生之問題。
此外,本文針對雙階層結構之系統,提出階層式離散時間順滑模式控制器設計法則,此法則捨棄了傳統常用的「兩階段模式切換控制法」,直接將此兩階段式的設計理念合而為一,以階層式順滑模式控制器設計技巧取代之。控制系統的安定時間可以經由選取之順滑向量來決定,且可以同時滿足系統對粗調與微調追蹤性能之要求。因此,可以有效解決兩階段模式切換控制法之缺點,如系統動態不匹配、控制輸入不連續及安定時間計算困難等問題。
為進一步探究這些方法的可行性與有效性,本文將以上所提之設計法則,應用於不斷電系統與光碟機之尋軌伺服控制系統。由實驗結果顯示,本文所提之設計法則其共同優點為:具有強健性、能有效減輕或消除抖振現象及控制器設計與容易實現等。另就光碟機之尋軌控制而言,階層式法則還具有:可以克服系統之不動帶區間效應、縮短資料讀取時間、有效降低尋軌誤差與省掉長程尋軌控制時之阻尼調整程序等優點。
A discrete-time sliding-mode control scheme for a certain class of systems is proposed to guarantee the existence of sliding-mode as well as to alleviate the chattering. Firstly, a process using auxiliary compensator is introduced and the explicit condition to ensure the one-sided behavior, deadbeat sliding-mode and quasi-sliding mode is derived, which is merely an inequality constraint on controller parameters. This condition also guarantees that the state trajectory starting from any initial condition, will reach the boundary layer of the switching surface in a finite number of steps. Moreover, the controller parameters can be determined via the correlation between the pole location in the z-plane and the time-domain response characteristics. Next, a robust discrete-time sliding-mode approach for a class of perturbed systems is proposed. To overcome the difficulty of conservative design due to over-estimated upper bounds on system perturbations; the discrete-time sliding-mode control law employs a smooth function to alleviate the chattering phenomenon. Conditions for stability are analyzed and given. Also, an estimated reaching time can be pre-calculated. Finally, we propose a discrete-time hierarchical sliding-mode approach for dual-stage systems. Here, we combine the dual-stage positioning servo design phase into only one stage. Therefore, the performance of the coarse tracking and fine tracking stages can be ensured simultaneously. The settling time of the controlled positioning system can be assigned through the choice of a pre-specified sliding hyperplanes. Hence, the proposed methodology can avoid the drawbacks of mode switching control design, such as discontinuity in control input, incompatible dynamic characteristics, and difficulty in estimating the overall settling time and is easy to be implemented for practical applications. Simulation and experimental studies of an uninterruptible power supply control systems, seek control of an optical pick-up head and the dual-stage positioning servo systems are performed to validate the feasibility and the effectiveness of these approaches.
TABLE OF CONTENTS
ABSTRACT I
TABLE OF CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES VIII
LIST OF SYMBOLS IX
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATIONS 1
1.2 LITERATURE SURVEY 3
1.3 OBJECTIVES 5
1.4 ORGANIZATION 6
CHAPTER 2 SLIDING-MODE CONTROL FOR A CERTAIN CLASS OF SYSTEMS 8
2.1 OVERVIEW 8
2.2 DEFINITIONS AND PRELIMINARIES 9
2.3 CONTINUOUS-TIME SLIDING-MODE CONTROL SCHEME 10
2.4 DISCRETE-TIME SLIDING-MODE CONTROL 14
2.5 SUMMARY 17
CHAPTER 3 A DISCRETE-TIME SLIDING-MODE DESIGN WITH AUXILIARY COMPENSATOR 19
3.1 INTRODUCTION 19
3.2 PROBLEM STATEMENT 20
3.3 THE PROPOSED DSMC DESIGN 22
3.3.1 Design of Equivalent Control Law 22
3.3.2 Design of Auxiliary Compensator 23
3.4 SIMULATIONS AND DISCUSSION 27
3.5 SUMMARY 28
CHAPTER 4 DESIGN OF A DISCRETE-TIME SLIDING-MODE CONTROLLER FOR SYSTEMS WITH BOUNDED DISTURBANCES 36
4.1 INTRODUCTION 36
4.2 DISCRETE-TIME SMC LAW DESIGN 37
4.3 APPLICATION TO AN UPS INVERTER 40
4.3.1 Introduction to UPS System 40
4.3.2 Description of UPS System 42
4.3.3 The Proposed Controller Design for UPS 43
4.4 SIMULATION AND EXPERIMENTAL VERIFICATION 52
4.4.1 Simulation Results 53
4.4.2 Experimental Verification 53
4.5 SUMMARY 54
CHAPTER 5 A ROBUST DISCRETE-TIME SLIDING-MODE APPROACH FOR A CLASS OF PERTURBED SYSTEMS 65
5.1 INTRODUCTION 65
5.2 PROBLEM STATEMENT 67
5.3 DESIGN OF A ROBUST DISCRETE-TIME SMC 68
5.4. EXPERIMENTAL VALIDATION 71
5.4.1 System Modeling 72
5.4.2 Experimental Setup 74
5.4.3 Long-Seek Controller Design 74
5.4.4 Simulation and Experimental Verification 76
5.5 SUMMARY 77
CHAPTER 6 A DISCRETE-TIME HIERARCHICAL SLIDING MODE APPROACH FOR DUAL-STAGE SYSTEMS 85
6.1 INTRODUCTION 85
6.2 DESCRIPTION OF A DUAL-STAGE STRUCTURE 88
6.3 DESIGN OF A DISCRETE-TIME HIERARCHICAL SMC 89
6.4 EXPERIMENTAL VALIDATION 96
6.4.1 Description of a CD-ROM Drive System 96
6.4.2 Experimental Setup 97
6.4.3 Track-seeking Controller Design 98
6.4.4 Experimental Verification 100
6.5 SUMMARY 102
CHAPTER 7 SUMMARY AND RECOMMENDATIONS 114
7.1 SUMMARY OF THE THESIS 114
7.2 RECOMMENDATIONS FOR FURTHER RESEARCH 116
REFERENCES 118
REFERENCES
[1] V. I. Utkin, “Variable structure systems with sliding mode: a survey,” IEEE Trans. Autom. Control, vol. AC-22, no. 2, pp. 212-222, 1977.
[2] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 2, pp. 2-22, 1993.
[3] H. Sira-Ramirez, “Differential geometric methods in variable-structure control,” Int. J Contr., vol. 48, no. 4, pp. 1359-1390, 1988.
[4] J. J. Slotine, and J. A. Coestee, “Adaptive sliding controller synthesis for non-linear systems,” Int. J. Contr., vol. 43, no. 6, pp. 1631-1651, 1986.
[5] M. D. Espana, R. S. Ortega, and J. J. Espino, “variable structure system with chattering reduction: A microprocessor based design,” Automatica, vol. 20, no. 1, pp. 133-134, 1984.
[6] C. F. Yung, and S. D. Lin, “New smooth approximation of variable structure systems with application to tracking control,” Journal of Control Systems and Technology, vol. 3, no. 3, pp.213-220, 1995.
[7] A. G. Bondarev, S. A. Bondarev, N. E. Kostyleva, and V. I. Utkin, “Sliding modes in systems with asymptotic state observers,” Automation and Remote Control, vol. 46, no. 6, pp.679-684, 1985.
[8] Y. Eun, J. H. Kim, K. Kim, and D. L. Cho, “Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism,” IEEE Trans. Contr. Syst. Technology, vol. 7, no. 5, pp. 540-552, 1999.
[9] L. Hsu, F. Lizarrable, and A. D. De Araujo, “New results on output-feedback variable structure model-reference adaptive control: design and stability analysis,” IEEE Trans. Automat. Contr., vol. 42, no. 3, pp. 386-393, 1997
[10] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Technology, vol. 7, no. 3, pp. 328-342, 1999.
[11] A. Benchaib, A. Rachid, and E. Audrezet, “Sliding mode input-output linearization and field orientation for real-time control of induction motors,” IEEE Trans. Power Electronics, vol. 14, no. 1, pp. 3-13, 1999.
[12] G. Bartolini, and P. Pydynowski, “An improved, chattering free, VSC scheme for uncertain dynamical systems,” IEEE Trans. Automat. Control, vol. 41, no. 8, pp. 1220-1226, 1996.
[13] K. Y. Chang, and W. J. Wang, “ constraint and variance control for stochastic uncertain large-scale systems via the sliding mode concept,” IEEE Trans. Circuits and Systems, vol. 46, no. 10, pp. 1275-1280, 1999.
[14] R. A. Decarlo, S. H. Zak, and G. P. Matihews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proc. IEEE, vol. 76, no. 3, pp. 212-232, 1988.
[15] F. J. Chang, S. H. Twu, and S. Chang, “Adaptive chattering alleviation of variable structure systems control,” Proc. IEE P.t D, vol. 137, no. 1, pp. 31-39, 1990.
[16] M. H. Park, and K. S. Kim, “Chattering reduction in the position control of induction motor using sliding mode,” IEEE Trans. Power Electronics., vol. 6, no. 3, pp. 317-325, 1991.
[17] E. Y. Y. Ho, and P. C. Sen, “Control dynamics of speed drive systems using sliding mode controllers with integral compensation,” IEEE Trans. Ind. Applications., vol. 27, no. 5, pp. 883-892, 1991.
[18] G. Bartolini, “Chattering phenomena in discontinuous control systems,” Int. J. Sci., vol. 20, no. 12, pp. 2471-2481, 1989.
[19] A. S. I. Zinober, O. M. E. El-Ghezawi, and S. A. Billings, “Multivariable variable-structure adaptive model following control systems,” Proc. IEE P.t D, vol. 129, no. 1, pp. 6-12, 1982.
[20] F. H. F. Leung, L. K. Wong, and P. K. S. Tam, “Algorithm for eliminating chattering in sliding mode control,” IEE Electronics Letters, vol. 32, no. 6, pp. 599-601, 1996.
[21] Y. S. Lu, and J. S. Chen, “A global sliding mode controller design for motor drives with bounded control,” Int. J. Contr., vol. 62, no. 5, pp. 1001-1009, 1995.
[22] Y. S. Lu, and J. S. Chen, "Design of a perturbation estimator using the theory of variable structure and its application to magnetic levitation systems,” IEEE Trans. Ind. Electron., vol. 42, no. 3, pp. 281-289, 1995.
[23] F. J. Lin, and L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control,” Proc. IEE Electronic Power Application, vol. 144, no. 3, pp. 199-206, 1997.
[24] C. Unsal, and P. Kachroo, “Sliding mode measurement feedback control for antilock breaking systems,” IEEE Trans. Contr. Syst. Technology., vol. 7, no. 2, pp. 271-281, 1999.
[25] S. J. Chiang, T. L. Tai, and T. S. Lee, “Variable structure control of UPS inverters,” Proc. IEE Electronic Power Application, vol. 145, no. 6, pp. 559-567, 1998.
[26] H. Elmali, and N. Olgac, “Satellite attitude control via sliding mode with perturbation estimation,” Proc. IEE Control Theory and Application, vol. 143, no. 3, pp. 276-282, 1996.
[27] C. L. Hwang, “Neural-network-based variable structure control of electrohydraulic servosystems to huge uncertainties without persistent excitation,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 50-59, 1999.
[28] S. Sivrioglu, and K. Nonami, “Sliding mode control with time-varying hyperplane for AMB systems,” IEEE/ASME Trans. Mechatronics, vol. 3, no. 1, pp. 51-59, 1998.
[29] Da Cunha, J.P.V.S, R. R. Costa, and L. Hsu “Design of a high performance variable structure position control of ROVs,” IEEE J. of Oceanic Engineering, vol. 20, no. 1, pp. 42-55, 1995.
[30] G. Song, and R. Mukherjee, “A comparative study of conventional nonsmooth time-invariant and smooth time-varying robust compensators,” IEEE Trans. Contr. Syst. Technology, vol. 6, no. 4, pp. 571-576, 1998.
[31] G. Bartolini, A. Ferrara, and V. I. Utkin, “On multi-input chattering-free second-order sliding mode control,” IEEE Trans. Automat. Control, vol. 45, no. 9, pp. 1711-1717, 2000.
[32] D. Q. Zhang, and G. X. Guo, “Discrete-time sliding mode proximate time optimal seek control of hard disk,” Proc. IEE Control Theory and Application, vol. 147, no. 4, pp. 400-446, 2000.
[33] X. Chen, T. Fukuda, and K. D. Young, “A new nonlinear robust disturbance observer,” System & Control Letters, 41, 189-199, 2000.
[34] O. Kaynak, K. Erbatur, and M. Ertugrul, "The fusion of computationally intelligent methodologies and sliding-mode control - A survey,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 4-17, 2001.
[35] W. J. Cao, and X. Gao, "Repetitive variable structure control of micro-actuators with periodic disturbance and parametric uncertainties,” IEEE Trans. Magnetics, vol. 3, no. 4, pp. 1902-1905, 2001.
[36] K. Ogota, “Discrete-time control system,” Prentice-Hall, New Jersey, 1995.
[37] G. F. Franklim, J. D. Powell, and M. L. Workman, “Digital control of dynamic systems,” Anddison-Wesley, United States of America, 1990.
[38] K. J. Astrom, and B. Wittenmark, “Computer-controlled systems,” Prentice-Hall, New Jersey, 1997.
[39] S. V. Emelyanov, S. K. Korovin, and I. G. Mamedov, “Variable-structure control systems: discrete and digital,” CRC Press, 1995.
[40] K. Furuta, “Sliding mode control of a discrete system,” Syst. Contr. Lett., vol. 14, pp. 145-152, 1990.
[41] C. Y. Chan, “Robust discrete-time sliding mode controller,” Syst. Contr. Lett., vol. 23, pp. 371-374, 1994.
[42] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 117-122, 1995.
[43] G. Bartonlini, A. Ferrara and V. I. Utkin, “Adaptive sliding mode control in discrete-time systems,” Automatica, vol. 31, no. 5, pp. 769-773, 1995.
[44] M. L. Corradini, and G. Orlando, “Variable structure control of discretized continuous-time systems,” IEEE Trans. Automat. Control, vol. 43, no. 9, pp. 1329-1334, 1998.
[45] A. Bartoszewicz, “Discrete-time quasi-sliding-mode control strategies,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 633-637, 1998.
[46] K. Furuta, “VSS type Self-tuning control,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 37-44, 1993.
[47] W. J. Wang, G. H. Wu, and D. C. Yang, “Variable structure control for uncertain discrete-time systems,” IEEE Trans. Automat. Control, vol. 39, no. 1, pp. 90-102, 1994.
[48] M. L. Corradini, and G. Orlando, “A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV,” IEEE Trans. Contr. Syst. Technology., vol. 5, no. 3, pp. 349-359, 1997.
[49] C. Y. Chan, “Robust discrete quasi-sliding mode tracking controller,” Automatica, vol. 31, no. 10, pp. 1509-1511, 1995.
[50] O. Kaynak, and A. Donker, “Discrete-time sliding mode control in the presence of system uncertainty,” Int. J. Contr., vol. 57, no. 5, pp. 1177-1189, 1993.
[51] H. Elmali, and N. Olgac, “Sliding mode control with perturbation estimation (SMCPE): a new approach,” Int. J. Contr., vol. 56, no. 5, pp. 923-941, 1992.
[52] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear Multivariable systems: a tutorial,” IEEE Proceedings, vol. 76, no. 3, pp. 212-232, 1988.
[53] J. J. Slotine, “Applied nonlinear control,” Prentice-Hall, New Jersey, 1991.
[54] S. Z. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the stability of discrete-time sliding mode control system,” IEEE Trans. Automat. Control, vol. 32, no. 10, pp. 930-932, 1987.
[55] U. Kotta, “Comments on - On the stability of discrete-time sliding mode control systems,” IEEE Trans. Automat. Control, vol. 34, no. 9, pp. 1021-1022, 1994.
[56] K. S. Low, Y. S. Deng, and C. Y. Chan, “Discrete-time sliding mode control of a brushless DC driver,” IEEE PESC Conf. Rec., vol. 1, pp. 286-290, 1997.
[57] Alan S. I. Zinober, “Variable structure and Lyapunov control,” Springer-Verlag, New York, 1994.
[58] K. Ernik, and D. Zadravec, “Sliding mode controller for a single phase inverter,” Proceedings of IEEE APEC, 1990, pp. 185-190.
[59] M. Carpita, and M. Marchesoni, “Experimental study of a power conditioning system using sliding mode control,” IEEE Trans. Power Electron., vol. 11, no. 5, pp. 731-741, 1996.
[60] J. F. Silva, and S. S. Paulo, “Fixed frequency sliding mode modulator for current mode PWM inverters, ” Proceedings of IEEE PESC, 1993, pp. 623-629.
[61] H. Pinheiro, A. S. Martins, and J. R. Pinheiro, “A sliding mode controller in single phase voltage source inverters, ” Proceedings of IEEE IECON, 1994, pp. 394-398.
[62] S. L. Jung, and Y. Y. Tzou, “Sliding mode control of a closed-loop regulated PWM inverter under large load variation,” in IEEE PESC Conf. Rec., 1993, pp. 616-622.
[63] S. L. Jung, and Y. Y. Tzou, “Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 567-577, 1996.
[64] T. L. Chern, J. Chang, C. H. Chen, and H. T. Su, “ Microprocessor-Based Modified Discrete Variable-Structure Control for UPS,” IEEE Trans. Ind. Electron., vol. IE-46, no. 2, pp. 340-348, 1999.
[65] C. Y. Chan, “Servo-system with discrete-variable structure control,” System & Control Lett., vol. 17, no. 4, pp.321-325, 1991.
[66] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Applications and Design. Wiley, 1995.
[67] T. Yamaguchi, H. Numasato and H. Hirai, “A mode-switching control for motion control and its application to disk drives: design of optimal mode-switching conditions,” IEEE Trans. Mechatronics., vol. 3, no. 3, pp. 202-209, 1997.
[68] L. Yi, and M. Tomizuka, “Two-degree-of-freedom control with robust feedback control for hard disk servo systems,” IEEE Trans. Mechatronics., vol. 4, no. 1, pp. 17-24, 1999.
[69] S. Weerasooriya, and D. T. Phan, “Discrete-time LQG/LTR design and modeling of a disk drive actuator tracking servo system,” IEEE Trans. Ind. Electron., vol. 3, no. 3, pp. 240-247, 1995.
[70] CD-ROM Learning Kit, Key Technology Co. Ltd. January, 1998.
[71] C. F. Lin, “Design and implementation of a servo control chip for CD-ROM,” Master thesis, Department of Power Mechanical Engineering, Nation Tsing Hua University, 1999.
[72] Richard J. Vaccaro, Digital Control: A State-Space Approach, McGraw-Hill, New York, 1995.
[73] P. K. Nandam, and P. C. Sen, “A comparative study of a Luenberger observer and adaptive observer-based variable structure speed control system using a self-controller synchronous motor,” IEEE Trans. Ind. Electron., vol. 37, no. 2, pp. 127-132, 1990.
[74] S. K. Chang, W. T. You and P. L. Hsu, “Design of General Structured Observers for Linear Systems with Unknown Inputs,” J. Franklin Inst., vol. 334B, no. 2, pp. 213-232, 1997.
[75] T. L. Tai, and J. S. Chen, “Toward the discrete Sliding-mode controller design for an optical pick-up head,” in Proc. 6th International Workshop on Advanced Motion Control, Nagoya, Japan, 2000, pp. 496-501.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top