跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林錦垣
研究生(外文):Jin-Yuan Lin
論文名稱:可調式強健性控制器之設計與研究
論文名稱(外文):Toward the Design and Implementation of Controllers with Adjustable Robustness
指導教授:陳建祥
指導教授(外文):Jian-Shiang Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:強健性線型可變磁阻馬達全域順滑模態控制混合式控制
外文關鍵詞:robustnesslinear variable reluctance motorglobal sliding mode controlhybrid control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文提出一系統強健性可依設計規格而調整的新型順滑模式控制設計法則,以改善絕大多數順滑模式控制的強健性要求,對於實際控制系統而言,常過於嚴苛的現象。此法則的主要理念,乃在於藉由將系統閉路極點拘束於一特定區域以取代傳統的定點設計法,使得順滑模式具有可調整之強健性能。
文中,首先提出一結合順滑模式控制與狀態回授控制法的可調整強健性順滑模式控制設計法則(GSMCAR)。此法則藉由結合順滑函數與未擾動系統動態來加權順滑模式控制與狀態回授控制間的輸出,使得抖動量能因之降低。對一已知的干擾範圍,系統閉路極點亦能被拘束於一特定區域內。當期望極點區域為一碟型範圍時,順滑模式控制輸出的加權量亦可用Jury’s 測試法來決定。又因順滑函數的初值即為零,使得此可調整強健性存在於全程響應中。接著,提出一積分型全域順滑模式控制(IGSMC)技巧來改進GSMCAR法則的穩態特性。應用此IGSMC技巧,不僅在順滑模式的強健性依然可以調整。系統穩態誤差亦因控制力引入積分作用而為之消除。最後,應用GSMCAR法則的特性,本文提出一種能兼具考量控制力限制的移動型順滑函數來處理追蹤控制的問題,即具輸入限制之全域順滑模式控制(GSMCBI)法則。使暫態過程中的調變強健性與控制力限制均得以滿足,穩態時的嚴苛強健性要求亦能達成。
為進一步探究各法則的可行性,本文亦設計了一具有電流磁滯控制的線型可變磁阻馬達驅動器,配合前述各法則的應用,組成一完整的精密位置伺服系統。經由電腦模擬與實作結果顯示,本文所提之設計法則,具有令人滿意的有效性與實用性。
Abstract
This thesis presents new design schemes for sliding-mode control (SMC) with the aim that system robustness can be adjusted according to the designer’s specifications. The main design idea proposed in this thesis is that of clustering the closed-loop poles within a predefined region instead of fixed locations for the robust performance in sliding-mode to be adjustable.
Firstly, a novel global sliding-mode control scheme with adjustable robustness (GSMCAR) is proposed, which offers a switching function together with nominal system dynamics to weigh the contribution between SMC and state feedback control such that the maximum control effort and the chattering level can be reduced effectively. With given bounds of perturbation, the closed-loop poles can be located within a predefined region in the left-half s-plane. Furthermore, a Jury’s test is utilized to determine the weight of SMC in which the desired regions are defined as a circular disk. Since the switching function is equal to zero initially and thereafter, the adjustable robustness can be guaranteed during the entire response. Subsequently, an integral global sliding-mode control (IGSMC) scheme is proposed to further improve the steady state performance of the GSMCAR scheme. This scheme offers an integral action on control effort so that the steady state error can be minimized. The robust performance in sliding-mode can be adjusted as well.
Lastly, a global sliding-mode control with bound input (GSMCBI) scheme is proposed to deal with the tracking control problem of a system with bounded input constrain, in which a moving sliding function is developed. In order to investigate the feasibility of the proposed schemes, a linear variable reluctance motor drive system with a hysteresis current-controlled inverter is established. Both the simulation and the experimental studies further demonstrate their effectiveness.
Chapter 1 Introduction 1
1.1 Motivations and Objectives 1
1.2 Literature Survey 3
1.2.1 Sliding-mode control scheme 3
1.2.2 IVSC scheme 5
1.2.3 GSMC scheme 6
1.2.4 Adjustable robustness 7
1.3 Organizations of this thesis 8
Chapter 2 A Global Sliding-Mode Control Scheme with Adjustable Robustness 11
2.1 Introduction 11
2.2 Problem Statement 12
2.3 Controller Design with Adjustable Robustness 15
2.3.1 Basic concept 15
2.3.2 Sliding-mode control with adjustable robustness 16
2.3.3 Determination of k based on performance robustness 21
2.4 Summary 21
Chapter 3 An Integral Global Sliding-Mode Control Scheme 25
3.1 Introduction 25
3.2 Problem Statement 26
3.3 The IGSMC Controller Design 29
3.3.1 The proposed scheme 29
3.3.2 The sliding dynamics 31
3.4 Summary 34
Chapter 4 A Global Sliding-Mode Control Scheme with Bounded Input 36
4.1 Introduction 36
4.2 Problem Statement 37
4.3 Sliding Dynamics Design Using GSMCAR 39
4.3.1 Choice of sliding surface 40
4.3.2 Design of sliding-mode controller 41
4.3.3 Determination of k based on input constraint 43
4.4 Summary 46
Chapter 5 Experimental Setup of a LVRM Servo-Drive System 47
5.1 Introduction 47
5.2 A Servo Drive Design for LVRM 48
5.2.1 The dynamics of the LVRM under study 48
5.2.2 The dynamic model of the LVRM servo-drive system 51
5.3 Experimental Setup of LVRM Servo-Drive System under Study 53
5.3.1 The experimental system 53
5.3.2 A model for outer loop controller design 56
5.4 Summary 57
Chapter 6 Simulation and Experimental Validation 72
6.1 Introduction 72
6.2 The GSMCAR Scheme 72
6.2.1 The GSMCAR controller design 73
6.2.2 Simulation results 74
6.2.3 Experimental results 76
6.3 The IGSMC Scheme 77
6.3.1 The IGSMC controller design 77
6.3.2 Simulation results 78
6.3.3 Experimental results 79
6.4 The GSMC with Bounded Input Scheme 80
6.4.1 The GSMCBI controller design 80
6.4.2 Simulation results 82
6.3.3 Experimental results 83
6.5 Summary 84
Chapter 7 Summary and Recommendations for Future Work 110
7.1 Summary and Contribution of the Thesis 110
7.2 Recommendations for Future Work 111
List of References 114
Biographical Note 121
References
[1] K.-K. D. Young, “A variable structure model following control design for robotics applications,” in Proc. IEEE Int. Conf. On Robotics and Automation, San Francisco, CA., pp.540-543, 1986.
[2] J.-J. E. Slotine and S. S. Sastry, “ Tracking control of nonlinear system using sliding surface with application to robot manipulator,” Int. J. Contr. vol. 38, no. 2, pp.465-492, 1986.
[3] V. I. Utkin, “Sliding mode control design principles and applications to electric drives,” IEEE Trans. on Ind. Elec., vol. 40, no. 1, pp23-36, Feb. 1993.
[4] G. S. Buja, R. Menis, and M. I. Valla, “ Variable structure control of an SRM drive,” IEEE Trans. on Ind. Elec., vol. 40, no. 1, pp.56-63, Feb. 1993.
[5] H. Hashimoto, H. Yamamoto, S. Yanagisava, and H. Harashima, “Brushless servomotor control using variable structure approach,” in Conf. Rec. 1986 IEEE Industrial Application Society Annu. Meet. Pt.1, pp.72-79, 1986.
[6] F. J. Lin and S. L. Chiu, “Adaptive sliding-mode control for PM synchronous servo motor drives,” IEE Proc. Of Control Theory Application, vol. 145, no. 1, January 1998.
[7] H. Yan, K.P. Sanjib and Y. C. Liang, "Performance comparison of sliding mode control with PI control for four-quadrant of switched reluctance motors," Proc. of Power Electronics, Drives and Energy System for Industrial Growth, Int. Conf., vol. 1, pp381-387, 1995.
[8] G. John and A. R. Eastham, "Speed control of switched reluctance motor using sliding mode control strategy," Industry Applications Conference, 14th IAS Annual Meeting, vol. 1, pp263-270, 1995.
[9] D. Cho, Y. Kato, and D. Spilman, “Sliding mode and classical controllers in magnetic levitation systems,” IEEE Contr. Sys. Magazine, vol.13, pp.42-48, 1993.
[10] Y. S. Lu and J. S. Chen, “ A self-organizing fuzzy sliding mode controller design for a class of nonlinear servo system,” IEEE Trans. on Ind. Electronic, vol. 41, n. 5, pp.492-502, 1994.
[11] S. J. Chiang, T. L. Tai and T. S. Lee, “Variable structure control of UPS inverters,” IEE Proc. of Electronic Power Application, vol. 145, no. 6, pp.559-567, 1998.
[12] T.-L. Chern, J. Chang, C.-H. Chen, and H.-T. Su, “ Microprocessor-based modified discrete integral variable-structure control for UPS,” IEEE Trans. on Ind. Electr., vol. 46, n. 2, pp.340-348, 1999.
[13] Y. S. Lu, “Pole-placement design with adjustable robustness using sliding-mode technique,” JSME International Journal, Series C, vol. 41, no.2, pp.248-254, 1998.
[14] U. Itkis, Control Systems of Variable Structure. Wiley, New York, NY, 1976.
[15] J.-J. E. Slotine, “ Sliding controller design for nonlinear systems,” Int. J. Contr., vol. 40, no. 2, pp. 421-434, 1986.
[16] M. Coreless and G. Leitmann, “ Continuous state feedback guaranteeing uniform boundedness for uncertain dynamic system,” IEEE Trans. on AC, vol. 26, no.5, pp.1139-1144, 1981.
[17] G. Ambrosino, G. Celentano, and F. Garofalo, “Variable structure model reference adaptive control system,” Int. J. Contr., vol. 39, no. 6, pp. 1339-1349, 1984.
[18] M. H. Park and K. S. Kim, “Chattering reduction in the position control of induction motor using sliding mode,” IEEE Trans. on Power Electronics, vol. 6, no. 3, pp.317-325, 1991.
[19] F. J. Chang, S. H. Twu, and S. Chang, “Adaptive chattering alleviation of variable structure systems control,” Proc. IEE Pt. D, vol. 137, no. 1, pp. 31-39, 1990.
[20] E. Y. Y. Ho and P. C. Sen, “Control dynamics of speed drive systems using sliding mode controllers with integral compensation,” IEEE Trans. on Industry Applications, vol. 27, no. 5, pp.883-892, 1991.
[21] F.H.F. Leung, L. K. Wong and P.K.S. Tam, “Algorithm for eliminating chattering in sliding mode control,” IEE Electronics Letters, vol. 32, no. 6, pp.599-601, March, 1996.
[22] F. Harashima, H. Hashimoto, and S. Kondo, “MOSFET converter-fed position servo system with sliding mode control,” IEEE Trans. on Indus. Elec., vol. IE-32, no. 3, pp.238-244, 1986.
[23] A. Kawamura, H. Itoh and K. Sakamoto, “Chattering reduction of disturbance observer based sliding mode control,” IEEE Trans. on Industry Applications, vol. 30, no. 2, pp.456-461, Mar. 1994.
[24] A. Bartoszew1cz, “Design of a nonlinear time-varying switching line for second order systems,” Proc. of the 37th IEEE Conf. on Decision and Control, pp.2404-2408, Florida USA, Dec. 1998.
[25] A. A. Bahnasawi, S. Z. Eid, and M. S. Mahmoud, “Adaptive model-following control based on variable structure systems,” Int. J. Systems Science, vol. 22, pp.333-349, 1991.
[26] L. Guzzela and H. P. Geering, “Model following variable structure control for a class of uncertain mechanical systems,” Proc. of the 25th IEEE Conf. on Decision and Control, pp.312-317, 1986.
[27] T. P. Leung, Q. J. Zhou, and C. Y. Su, “An adaptive variable structure model following control design for robot manipulators,” IEEE Trans. on AC, vol. 36, no. 3, pp. 347-353, pp.347-3536, 1991.
[28] Y. S, Lu and J. S. Chen, “Design of a global sliding mode controller for robot manipulator with robust tracking capability,” Proceeding of the National Science Council-Part A: Physical Science and Engineering, vol. 18, no. 5, pp.463-467. Sep. 1994.
[29] Y. S. Lu and J. S. Chen, “A global sliding mode controller design for motor drives with bounded control,” Int. J. of Control, vol. 62, no. 5, pp.1001-1009, 1995.
[30] W. Y. Yan, D. Xu and R. Zhang, " Global sliding-mode control for companion nonlinear system with bounded control," Proc. of American control Conf., pp.3884-3888, pennsylvania, June, 1998.
[31] V. Utkin and J. X. Shi, “Integral sliding mode in systems operating under uncertainty conditions,” Proceedings of the 35th conference on Decision and Control, pp.4595-4596, Kobe Japan, 1996.
[32] J. D. Wang, T. L. Lee and Y. T. Juang, “New method to design an integral variable structure controller,” IEEE Trans. on AC, vol. 41, no. 1, pp.140-143, Jan. 1996.
[33] W. Gao and J. C. Hung, “Variable structure control of nonlinear systems: a new approach,” IEEE Trans. on Indus. Electr., vol. 40, no. 1, pp.45-55, Feb. 1993.
[34] T. L. Chern and Y. C. Wu, “ Design of integral variable structure controller and application to electrohydraulic velocity servosystems,” IEE Proceedings-D, vol. 138, no. 5, pp.439-444, Sep. 1991.
[35] T. L. Chern and Y. C. Wu, “Integral variable structure control approach for robot manipulators’” IEE Proceedings-D, vol. 139, no. 2, pp.161-166, March 1992.
[36] H. Tan, M. E. Greene and J.Y. Hung, “Integral augmented variable structure control: design and testing,” pp.1956-1961. 1993.
[37] W. S. Yan, D. M. Xu and Z. Ren, “Global sliding mode control for Companion nonlinear system with Bounded control,” Proceedings of the American Control Conference, pp.3884-3888, Pennsylvania USA, June 1998.
[38] R. J. Wai, “ Adaptive sliding-mode control for induction servomotor drive,” IEE Proc. of Electronic Power Application, vol. 147, no. 6, November. 2000.
[39] R. Okabayashi and K. Furuta, “Design of sliding mode control systems with constrained inputs,” Proceeding of the 35th Conference on Decision and Control, pp.3492-3497, Kobe Japan, Dec. 1996.
[40] K. K. Shyu and H. J. Shieh, “A new switching surface sliding-mode speed control for induction motor drive system,” IEEE Trans. on Power Electronics. Vol. 11, no. 4, pp.660-667, 1996.
[41] I.R. Horng, H.Y. Horng and J.H. Chou, “Perturbation bounds of eigenvalue distribution for uncertain system,” Control Theory and Advanced Technology, vol. 10 no. 4, pp.2133-2144, 1995.
[42] P. K. Yedavalli, “Robust root clustering for linear uncertain system using generlised Lyaounov theory,” Automatica, vol. 29, pp. 237-240, 1993.
[43] J.S. Luo, P.P.J. Bosch and S. Weiland, “New sufficient condition for robust root clustering of linear state space models with structured uncertainty,” IEE Proceedings of Control Theory Application, vol. 143, no. 3, pp. 244-246,1996.
[44] W. M. Haddad and D. S. Bernstein, “Controller design with regional pole constraints,” IEEE Trans. on Automatic Control, vol. 37, no. 1, pp. 54-69, 1992.
[45] G. Garcia and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Trans. on Automatic Control, vol. 40, no. 1, pp. 184-190, 1995.
[46] Furuta and S. B. Kim, “Pole assignment in a specified disk,” IEEE Trans. On Automatic Control, vol. Ac-32, no. 5, pp. 423-426, 1987.
[47] D. Arzelier, J. Bernussou and G Garcia, “Pole assignment of linear uncertain systems in a sector via a Lyapunov type approach,” IEEE Trans. on Automatic Control, vol. 38, no. 7, pp. 1128-1131, 1993.
[48] J. L. Wu and T. T. Lee, “Optimal control with regional pole constraints via the mapping theory,” IEE Proceeding of Control Theory Application, vol. 142, no. 6, pp.639-646, 1995.
[49] M. Chilali and P. Gahint, “ design with pole placement constraints: An LMI approach,” IEEE Trans. on Automatic Control, vol. 41, no. 3, pp. 358-367, 1996.
[50] V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, New York 1992.
[51] B. C. Kuo, Automatic Control System, 7th edition, Prentice Hall, New Jersey, 1995.
[52] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, third edition, Prentice-Hall, New Jersey, 1995.
[53] Y. S. Lu, Application of Sliding Mode Control to Nonlinear Servo Systems, Ph.D. dissertation, Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu, Taiwan (ROC), 1995.
[54] S. B. Choi, C. C. Cheong and D.W. Park, “Moving switching surfaces for robust control of second-order variable structure systems,” Int. J. Control, vol. 58, no 1, pp.229-248, 1993.
[55] G. R. Rajiv and O. Nejat, “Robust nonlinear control via moving sliding surface m-th order case,” Proceedings of the 36th Conference on Decision and Control, pp.943-948, San Diego USA, Dec. 1997.
[56] H.J. Lee, H. S. Shin, S. W. Kim and M. N. Park, “Variable structure control of manipulator using linear time-varying sliding surfaces,” Proceeding of the 1998 IEEE/RSJ Int. Conference on Intelligent Robots and systems, pp.806-811, Victoria Canada, Oct. 1998.
[57] B. Nasar, Linear Motion Electric Machines, Wiley-Interscience, 1976.
[58] T.J.E. Miller. Switched Reluctance Motors and their Control, Magna Physics Publishing and Clarendon Press, Hillsboro. OH and Oxford, 1993.
[59] M. T. Wu, Dynamic Modeling and Current Control Strategy Toward a Linear Variable Reluctance Motor, Master Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu, Taiwan (ROC), 1997.
[60] S. Y. Fwu, Experimental Study and Designs Toward the Linear Motor Drive, Master Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu, Taiwan (ROC), 1996.
[61] R. R. Hwang, Toward the Perturbation Estimator Design for Motor Drivers, Ph.D. Dissertation, Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu, Taiwan (ROC), 1997.
[62] J. -J. Slotine, and W. Li, Applied Nonlinear Control, (Prentice-Hall Inc., New Jersey, 1991)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top