跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭澤明
研究生(外文):TZER-MING JENG
論文名稱:多孔介質渠道內之熱流研究
論文名稱(外文):Fluid Flow and Heat Transfer Behavior in Porous Channels
指導教授:黃光治洪英輝
指導教授(外文):GUANG-JYH HWANGYING-HUEI HUNG
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:270
中文關鍵詞:熱傳特性流動特性多孔介質暫態液晶法單吹法
外文關鍵詞:Heat Transfer BehaviorFluid Flow BehaviorPorous MediaTransient Liquid Crystal MethodSingle-Blow Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究成功地針對矩型多孔性發泡鋁材渠道內之熱流現象作一系列之實驗與理論的探討;同時,亦對此類型渠道之局部與平均熱傳特性作參數影響研究,其中相關之影響參數包括渠道入口之空氣預熱溫度比()、雷諾數(Re)、孔隙率/孔密度(/PPI)、以及不同的渠道壁材質,上述參數的範圍分別是=1.8-3.0、Re=2076-6736、=0.7-0.93/5-40PPI、及渠道壁材質Type (I)與(II)。在流力方面,本研究對各項多孔性介質流動特性,諸如達西數(Da)、慣性係數(CF)及摩擦係數(f)等作有系統的探討。在熱傳方面,從渠道壁的溫度量測結果顯示:孔隙率愈低時,暫態液晶法所估算之結果與量測數據的偏差會愈顯著。造成此偏差的主要原因乃是下列兩個因素所致: (1)發泡鋁材測試塊於暫態時之熱容儲熱能力;及(2)發泡鋁材與渠道壁直接接觸所產生的熱傳導。為了克服暫態液晶法無法準確量測低孔隙率之多孔性介質渠道熱傳特性之缺點,本研究發展出一個新的半經驗理論模式,再輔以改良型單吹實驗法,則可成功地預測多孔性介質渠道之熱傳特性;在研究中亦針對多孔性介質渠道內可能之熱傳路徑與機制作詳盡探討,研究結果清楚地詮釋了流體與發泡鋁材、流體與渠道壁、及發泡鋁材與渠道壁之三種等效熱傳係數,以及發泡鋁材之熱容儲熱能力等四者間的關係。另外,由矩型多孔性發泡鋁材渠道內之局部與平均熱傳結果,皆發現 之比值在所有實驗情況下皆大於1,此顯示含多孔性材質之渠道有顯著的熱傳增益,唯此熱傳增益隨雷諾數增大而減小。有關熱流關係式方面,研究中首先針對二種不同型式之平均紐塞數分別提出新的經驗公式;進而引入了熱傳增益量 j/f 的觀念,而提出一條 j/f 與、Da、關係的新經驗公式。
最後,在與暫態液晶法所估算之結果比較,本研究採用之半經驗理論模式所得之渠道壁溫與實驗量測值更為吻合,尤其是在較低孔隙率的情況下。根據所有的實驗結果,研究中提出了在不同之、Re與情況下,採用暫態液晶法量測多孔性發泡鋁材渠道熱傳特性之誤差限制圖。
A series of experimental and theoretical investigations on the fluid flow and heat transfer behavior in porous aluminum foam channels have been successfully performed. The parametric studies on the local and average heat transfer characteristics have been explored. The influencing parameters include steady-state air preheating temperature ratio at channel inlet (), Reynolds number (Re) and porosity/pore density of test specimen (/PPI). The ranges of the above-mentioned parameters are:  = 1.8-3.0, Re = 2219-7595 and /PPI = 07-0.93/5-40PPI. In hydrodynamic aspect, the porous flow characteristics such as the Darcy number (Da), inertia coefficient (CF) and Darcy friction factor (f) have been investigated. In heat transfer aspect, from the study, it manifests that the erroneous deviation of the results evaluated by the transient liquid crystal method from the measured data become more significant for the cases with lower porosities. The main reasons to cause this discrepancy may be due to the following two effects: (1) the transient energy storage due to the matrix capacity and (2) the conductive heat transfer due to the direct contact between the solid matrix and channel wall. In order to overcome the deficiency of using the transient liquid crystal method to the study in porous channels with low porosities, a new semi-empirical model with an improved single blow method for exploring the heat transfer behavior in aluminum foam channels has been successfully developed. The heat transfer paths and mechanisms in porous channels have also been explored. The relationships among the fluid-solid, fluid-wall, effective solid-wall heat transfer coefficients and solid matrix capacity for porous channels have been presented. In addition, the influencing parameters on local and average heat transfer behavior have also been studied. The heat transfer enhancement of porous channels to hollow channels are, , much greater than unity and generally decrease with increasing Re. Two new correlations of and in terms of , Re, Da,  and  are proposed. Furthermore, a concept of the amount of enhanced heat transfer is also introduced. A new empirical correlation of j/f in terms of  , Da and  is presented.
As compared with the results evaluated by the transient liquid crystal method, the channel wall temperatures predicted by the semi-empirical model have a more satisfactory agreement with the experimental data, especially for the cases with smaller porosities. The limitations with relevant error maps of using the transient liquid crystal method in porous aluminum foam channels are finally postulated.
摘要
目錄
第一章 緒論
第二章 實驗設備與方法
第三章 多孔性介質渠道之流動
第四章 多孔性介質渠道之熱傳─暫態液晶實驗法
第五章 新的可預測多孔性介質渠道熱傳之半經驗理論模式
第六章 多孔性介質渠道之熱傳─新的半經驗理論模式配合改良型單吹實驗法
第七章 結論與建議
參考文獻
附錄(英文版)
Amiri, A., and Vafai, K., 1994, “Analysis of Dispersion Effects and Non-thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media,” Int. J. Heat Mass Transfer, Vol. 37, No. 6, pp. 939-954.
Amiri, A., Vafai, K., Kuzay, T. M., 1995, “Effects of Boundary Conditions on Non-Darcian Heat Transfer through Porous Media and Experimental Comparisons,” Numerical Heat Transfer J. Part A, Vol. 27, pp. 651-664.
Angirasa, D., and Peterson, G. P., 1999, “Forced Convection Heat Transfer Augmentation in a Channel With A Localized Heat Source Using Fibrous Materials,” ASME J. Electronic Packaging, Vol. 121, pp. 1-7.
Bastawros, A. F., and Evans, A. G., 1999, “Optimum Performance of Cellular Metal Heat Sinks for Thermal Management of High Power Electronics,” ASME Advances in Electronic Packaging, Vol. 1, pp. 733-736.
Beavers, G. S., and Sparrow, E. M., 1969, “Non-Darcy Flow Through Fibrous Porous Media,” J. Applied Mechanics, pp. 711-714.
Cai, Z. H., Li, M. L., Wu, Y. W., and Ren, H. S., 1984, “A Modified Selected Point Matching Technique for Testing Compact Heat Exchanger Surfaces,” Int. J. Heat Mass Transfer, Vol. 27, No. 7, pp. 971-978.
Calmidi, V. V., and Mahajan, R. L., 1999, “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams,” ASME J. Heat Transfer, Vol. 121, pp. 466-471.
Camci, C., Kim, K., Hippensteele, S. A., and Poinsatte, P. E., 1993, "Evaluation of a Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces," ASME J. Heat Transfer, Vol. 115, pp. 311-318.
Cheng, P., and Zhu, H., 1987, “Effects of Radial Thermal Dispersion on Fully-Developed Forced Convection in Cylindrical Packed Tubes,” Int. J. Heat Mass Transfer, Vol. 30, No. 11, pp. 2373-2383.
Cheng, P., Hsu, C. T., and Chowdhury, A., 1988, “Forced Convection in the Entrance Region of a Packed Channel with Asymmetric Heating,” ASME J. Heat Transfer, Vol. 110, pp. 946-954.
Chen, P. H., and Chang, Z. C., 1996, “An Improved Model for the Single-Blow Measurement Including the Non-adiabatic Side Wall Effect,” Int. Comm. Heat Mass Transfer, Vol. 23, No. 1, pp. 55-68.
Chen, P. H., and Chang, Z. C, 1997, “Measurements of Thermal Performance of Cryocooler Regenerators Using an Improved Single-Blow Method,” Int. J. Heat Mass Transfer, Vol. 40, No. 10, pp. 2341-2349.
Chou, F. C., Lien, W. Y., and Lin, S. H., 1992, "Analysis and Experiment of Non-Darcian Convection in Horizontal Square Packed-Sphere Channels - 1. Force Convection," Int. J. Heat Mass Transfer, Vol. 35, No. 1, pp. 195-205.
Cooper, T. E., Field, R. J., and Meyer, J. F., 1975, "Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer," ASME J. Heat Transfer, Vol. 97, pp. 442-450.
Cresswick, F. A., 1957, “A Digitial Computer Solution of the Equations for Transient Heating of a Porous Solid, Including the Effects of Longitudinal,” Industrial Mathematics, Vol. 8, p. 61.
Dickey, J. T., and Peterson, G. P., 1999, “Moody’s Diagram Heat Transfer Friction Flow Losses in Porous Materials,” Advances in Electronic Packing, Vol. 1, pp. 1011-1017.
Du Plessis, J. P., 1992, “Pore-scale Modelling for Flow through Different Types of Porous Environments,” Heat and Mass Transfer in Porous Media (Edited by M. Quintard and M. Todorovic), pp. 249-262, Elsevier, Amsterdam.
Du Plessis, J. P., Montillet, A., Comiti, J., and Legrand, J., 1994, “Pressure Drop Prediction for Flow Through High Porosity Metallic Foams,” Chemical Engineering Science, Vol. 49, No. 21, pp. 3545-3553.
Ekkad, S. V., Zapata, D., and Han, J. C., 1995, "Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection through Compound Angle Holes Using a Transient Liquid Crystal Image Method," ASME Paper, No. 95-GT-11.
Ekkad, S. V., and Han, J. C., 1996, “Heat Transfer Inside and Downstream of Cavities Using Transient Liquid Crystal Method,” J. Thermophysics and Heat Transfer, Vol. 10, No. 3, pp. 511-516.
Ellison, G. N., 1986, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold Company, New York, p. 36.
Ergun, S., 1952, “Fluid Flow through Packed Columns,” Chemical Engineering Progress, Vol. 48, No. 2, pp. 89-94.
Fowler, A. J., and Bejan, A., 1995, ”Forced Convection from a Surface Covered with Flexible Fibers,” Int. J. Heat Mass Transfer, pp. 767-777.
Golombok, M., Jariwala, H., and Shirvill, L. C., 1990, “Gas-Solid Heat Exchange in a Fibrous Metallic Material Measured by a Heat Regenerator Technique,” Int. J. Heat Transfer, Vol. 33, No. 2, pp. 243-252.
Hadim, A., 1994, “Forced Convection in a Porous Channel With Localized Heat Sources,” ASME J. Heat Transfer, Vol. 116, pp. 465-472.
Howard, C. P., 1964, “The Single Blow Problem including the Effects of Longitudinal Conduction,” ASME Paper, No. 64-GTP-11.
Hunt, M. L., and Tien, C. L., 1988, "Effects of Thermal Dispersion on Forced Convection in Fibrous Media," Int. J. Heat Mass Transfer, Vol. 31, No. 2, pp. 301-309.
Hunt, M. L., and Tien, C. L., 1988, "Non-Darcian Convection in Cylindrical Packed Beds," ASME J. Heat Transfer, Vol. 110, pp. 378-384.
Hwang, G. J., and Chao, C. H., 1992, "Effects of Wall Condition and Darcy Number on Laminar Mixed Convection in a Horizontal Square Porous Channel," ASME J. Heat Transfer, Vol. 114, pp. 614-621.
Hwang, G. J., and Chao, C. H., 1994, "Heat Transfer Measurement and Analysis for Sintered Porous Channel," ASME J. Heat Transfer, Vol. 116, pp. 456-464.
Hwang, G. J., Wu, C. C., and Chao, C. H., 1995, "Investigation of Non-Darcian Forced Convection in an Asymmetrically Heated Sintered Porous Channel," ASME J. Heat Transfer, Vol. 117, pp. 725-732.
Hwang, J. J., and Cheng, C. S., 1999, “Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets,” ASME J. Heat Transfer, Vol. 121, pp. 683-690.
Hunt, M. L., and Tien, C. L., 1988, “Non-Darcian Convection in Cylindrical Packed Beds,” ASME J. Heat Transfer, Vol. 110, pp. 378-384.
Ichimiya, K., 1999, ”A New Method for Evaluation of Heat Transfer Between Solid Material and Fluid in a Porous Medium,” ASME J. Heat Transfer, Vol. 121, pp. 978-983.
Izadpanah, M. R., , H., and Jamialahmadi, M., 1998, “Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical Porous Medium,” Int. J. Heat and Fluid Flow, Vol. 19, pp. 629-635.
Jeng, T. M., Wang, M. P., Hwang, G. J., and Hung, Y. H., 2001, “Heat Transfer Behavior in Rectangular Channels with Different Wall Material Types,” Accepted by Int. J. Experimental Heat Transfer. (Accepted to be published as a Technical Note on October 9, 2001).
Jones, D. P., and Krier, H., 1983, “Gas Flow Resistance Measurements through Packed Beds at High Reynolds Numbers,” ASME J. Fluids Engineering, Vol. 105, pp. 168-173.
Kline, S. J., and Mcclintock, F. A., 1953, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, pp. 3-8.
Koch, D. L., and Brady, J. F., 1986, “The Effect Diffusivity of Fibrous Media,” AIChE J., Vol. 32, No. 4, pp. 575-591.
Koh, J. C. Y., and Colony, R., 1974, "Analysis of Cooling Effectiveness for Porous Material in Coolant Passages," ASME J. Heat Transfer, Vol. 96, pp. 324-330.
Kohlmayr, G. F., 1968, “An Indirect Curve Matching Method for Transient Matrix Heat-Transfer Testing in the Low Ntu-Range,” Int. J. Heat Mass Transfer, Vol. 11, pp. 567-581.
Kuzay, T. M., Collins, J. T., Khounsary, A. M., and Morales, G., 1991, “Enhanced Heat Transfer with Metal-Wool-Filled Tubes,” Proc. ASME/JSME Thermal Eng. Conf., pp. 145-151.
Lee, S. L., 1989a, “Weighting Function Scheme and Its Application on Multidimensional Conservation Equations,” Int. J. Heat Mass Transfer, Vol. 32, No. 11, pp. 2065-2073.
Lee, S. L., 1989b, “A Strong Implicit Solver for Two-Dimensional Elliptic Differential Equations,” Numerical Heat Transfer, Part B, Vol. 16, pp. 161-178.
Liang, C. Y., and Yang, W. J., 1975, “Modified Single-Blow Technique for Performance Evaluation on Heat Transfer Surfaces,” ASME J. Heat Transfer, pp. 16-21.
Liu, S., Afacan, A., and Masliyah, J., 1994, “Steady Incompressible Laminar Flow in Porous Media,” Chemical Engineering Science, Vol. 49, No. 21, pp. 3565-3586.
Locke, G. L., 1950, “Heat Transfer and Flow Friction Characteristics of Porous Solids,” TR No. 10, Department of Mechanical Engineering, Stanford University, Palo Alto, Calif., USA.
Loehrke, R. I., 1990, “Evaluating the Results of the Single-Blow Transient Heat Exchanger Test,” Experimental Thermal and Fluid Science, pp. 574-580.
Martin, A. R., Saltiel, C., and Shyy, W., 1998, “Heat Transfer Enhancement with Porous Inserts in Recirculating Flows,” ASME J. Heat Transfer, Vol. 120, pp. 458-467.
Mills, A. F., 1962, “Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of a Circular Conduit,” J. Mech. Eng. Sci., Vol. 4, pp. 63-177.
Mills, A. F., 1995, Basic Heat and Mass Transfer, Richard D. IRWIN Inc., Chicago, p. 235.
Moffat, R. J., 1986, “Contributions to the Theorey of Single-Sample Uncertainty Analysis,” ASME J. Fluids Engineering, Vol. 104, pp. 250-260.
Peterson, G. P., and Chang, C. S., 1998, "Two-Phase Heat Dissipation Utilizing Porous-Channels of High-Conductivity Material," ASME J. Heat Transfer, Vol. 120, pp. 243-252.
Poulikakos, D., and Renken, K., 1987, “Forced Convection in a Channel Filled with Porous Medium, Including the Effects of Flow Inertia, Variable Porosity, and Brinkman Friction,” ASME J. Heat Transfer, Vol. 109, pp. 880-888.
Renken, K. J., and Poulikakos, D., 1988, “Experiment and Analysis of Forced Convective Heat Transfer in a Packed of Spheres,” Int. J. Heat Mass Transfer, Vol. 31, No. 7, pp. 1399-1408.
Schneider, P. J., 1955, Conduction Heat Transfer, Addison-Wesley Publishing Company, Inc., New York.
Schultz, D. L. and Jones, T. V., 1973, “Heat Transfer Measurements in Short Duration Hypersonic Facilities,” NATO Advisory Group Aeronautical RD, AGARDOGRAPH Report No. 165.
Schumann, T. E. W., 1929, “Heat Transfer: Liquid Flowing through a Porous Prism,” J. Franklin Inst., Vol. 208, pp. 405-416.
Singh, B. S., and Dybbs, A., 1976, “Error in Temperature Measurements Due to Conduction along the Sensor Leads,” J. Heat Transfer, pp. 491-495.
Sim, Y. S., and Yang, W. J., 1987, “New Performance-Evaluation Analyses on Heat Transfer Surfaces by Single-Blow Technique,” Int. J. Heat Mass Transfer, Vol. 30, No. 8, pp. 1587-1594.
, M., and Vafai, K., 1990, ”Analysis of the Non-thermal Equilibrium Condensing Flow of a Gas through a Packed Bed,” Int. J. Heat Mass Transfer, Vol. 33, No. 6, pp. 1247-1261.
Tien, C. L., and Vafai, K., 1979, “Statistical Bounds for the Effective Thermal Conductivity of Microsphere and Fibrous insulation,” Prog. Astronaut. Aeronaut., Vol. 65, pp. 135-148.
Vafai, K., and Tien, C. L., 1981, “Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media,” Int. J. Heat Mass Transfer, Vol. 24, pp. 195-203.
Vafai, K., 1984, “Convective Flow and Heat Transfer in Variable-Porosity Media,” J. Fluid Mech., Vol. 147, pp. 233-259.
Vafai, M., 1985, “Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates,” Int. J. Heat Mass Transfer, Vol. 28, No. 4, pp. 851-858.
Vafai, K., and Kim, S. J., 1989, “Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution,” ASME J. Heat Transfer, Vol. 111, pp. 1103-1106.
Vortmeyer, D., 1975, “Axial Heat Dispersion in Packed Beds,” Chemical Engineering Science, Vol. 30, pp. 999-1001.
Wang, M. P., 2000, “Forced Convective Heat Transfer in a Rectangular Hollow or Porous Channel,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
Wolfersdorf, J., Hoecker, R., and Sattelmayer, T., 1993, "A Hybird Transient Step-Heating Heat Transfer Measurement Technique Using Heater Foils and Liquid-Ceystal Thermography," ASME J. Heat Transfer, Vol. 115, pp. 319-324.
Wu, C. C., and Hwang, G. J., 1998, "Flow and Heat Transfer Characteristics Inside Packed and Fluidized Beds," ASME J. Heat Transfer, Vol. 120, pp. 667-673.
Yeh, R. H., 1997, “Heat Transfer Measurement inside Porous Aluminum Material by Single-Blow Transient Technique,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
Younis, L. B., and Viskanta, R., 1993, “Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam,” Int. J. Heat Mass Transfer, Vol. 36, No. 6, pp. 1425-1434.
Zigrang, D. J., and Sylvester, N. D., 1982, “Explicit Approximations to the Solution of Colebrook’s Friction Factor Equation,” AIChE J., Vol. 28, pp. 514-515.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top