跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂明璋
研究生(外文):Ming-Chang Lu
論文名稱:以分子動力學模擬奈米液滴及奈米管流場特性
論文名稱(外文):The Physical Phenomena of the Nano-Sized Liquid Droplet and Nano Channel Flow by Molecular Dynamics Simulation
指導教授:錢景常曾繁根曾繁根引用關係
指導教授(外文):Ching-Chang ChiengFan-Gang Tseng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:87
中文關鍵詞:分子動力學奈米液滴管流
外文關鍵詞:Molecular Dynamics SimulationNano-sizedLiquid dropletChannel flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
近年來奈米科技引起世人廣泛的注意,由於表面效應,小尺度效應以及量子效應的影響使的許多物理,化學性質在奈米尺度下呈現完全不同的特性,如加入奈米顆粒之液體會使此液體之傳導性成指數的增加等等。
故本研究採用分子動力學模擬方法 (Molecular Dynamics Simulation)針對奈米尺度下液體性質進行研究,其中包含液滴於固體表面之接觸角受其尺度的影響與液滴於固體表面動態擴散的情形以及流體在奈米管道下之流場特性探討。
本研究結果顯示於奈米尺度下液滴接觸角會受其尺度大小所影響,而不是如大尺度下所顯示之接觸角為一定值,於奈米尺度下當液滴越大時接觸角也隨之增加,而此效應於液滴越小時越明顯。
液滴在固體表面之擴散研究中,結果顯示在奈米尺度下液滴會有層狀結構形成於靠近固體表面部分,而且此層狀結構中屬不同層的液體會擁有不同的擴散速度,當壁面與液體間作用力較大時,此液滴以最接近壁面之第一層為主要擴散層,而當其作用力較小時,則為液滴整體向外擴散﹔液滴於表面之擴散會受溫度及固體表面特性影響,溫度越高以及親合力大的表面擁有較大的擴散速率。
奈米管流之流場並不同於大尺度下之管流特性,由於液體之平均自由徑相較於管徑已不可忽略,故此時一些對於連續流體的假設並不成立,亦即由Navier-Sokes equations 所得結果可能並不正確,故本研究採用分子動力學針對每一分子進行模擬,以了解奈米管流流場特性,在所得結果中顯示無因次化之速度,剪應力曲線圖會隨著管徑改變而改變,當管徑越大時,其速度與剪應力分布就越接近Navier-Sokes equations以及牛頓流體所得之結果,且速度分佈會隨液體種類不同而改變,結果顯示在相同外在條件下水的速度分佈較argon及乙烷流體更接近Navier-Sokes equations﹔另外在奈米尺度下,無滑移邊界條件成立與否取決於力平衡之結果,當壁面與液體間之作用力較小且外界驅動力較大時,則滑移邊界條件產生,反之則無滑移邊界條件成立,故在奈米尺度下無滑移邊界條件成立與否與表面特性以及流體種類相關。

CONTENTS
ABSTRACT (Chinese) …………………………………………………………i
ABSTRACT (English) ………………………………………………………iii
ACKNOWLEDGEMENT………………………………………………………………v
CONTENTS………………………………………………………………………vi
LIST OF FIGURES ……………………………………………………………ix
LIST OF TABLES ……………………………………………………………xii
NMOENCLATURE………………………………………………………………xiii
CHAPTER ONE INTRODUCTION…………………………………………………1
1.1 Motivation………………………………………………………………1
1.2 Literature Reviews……………………………………………………4
1.2.1 Liquid Droplet Contact with Solid Wall………………………4
1.2.2 Nano Channel Flow …………………………………………………5
1.3 Objectives of this Research ……………………………………9
CHAPTER TWO THEORETICAL MODEL …………………………………………11
2.1 Liquid Droplet on the Solid Wall…………………………………11
2.2 Nano Channel Flow ……………………………………………………14
CHAPTER THREE SIMULATION METHOD ………………………………………21
3.1 Liquid Droplet on the Solid Wall ………………………………21
3.1.1 Potential Functions ……………………………………………21
3.1.1 (a) The Potential between Vapor and Liquid Droplet ……21
3.1.1 (b) The Potential between Liquid Droplet and Solid Wall.22
3.1.2 Boundary Conditions ………………………………………………22
3.1.2. (a) Periodic Boundary Conditions ……………………………23
3.1.3 Initial Conditions…………………………………………………23
3.2 Nano Channel Flow ……………………………………………………24
3.2.1 The Potential between Fluid Molecules ………………………24
3.2.1 (a) SPC/E Model for Water Molecules …………………………25
3.2.1 (b) AMBER Potential Model for Organic Molecules …………25
3.2.2 The Potential between Wall molecules…………………………26
3.2.3 The Potential between Fluid and Wall molecules …………27
3.2.4 Boundary Conditions ………………………………………………28
3.2.4 (a) Constant Temperature Wall Boundary Condition…………29
3.2.5 Initial Conditions…………………………………………………29
3.3 Numerical Scheme in Simulation……………………………………30
3.3.1 Numerical Integration Method……………………………………30
3.3.1 (a) Euler’s Method ………………………………………………30
3.3.1 (b) Verlet Integration Method …………………………………30
3.3.2 Neighbor List Method in MD Simulation ………………………32
3.3.2 (a) Verlet Neighbor Lists ………………………………………32
3.3.2 (b) Cell Link Neighbor List ……………………………………33
3.4 Molecular dynamic simulation of
rigid non-spherical bodies……………………34
CHAPTER FOUR RESULTS AND DISCUSSION …………………………………44
4.1 The Liquid Droplet on Solid Wall…………………………………44
4.1.1 The Size Effect for Equilibrium Contact Angle ……………44
4.1.2 Dynamic Wetting Behavior Study by Molecular
Dynamic Simulation…………………………………………………………46
4.1.2.1 Results and Discussion…………………………………………47
4.1.3 Summary ………………………………………………………………48
4.1.3.1 The size effect on equilibrium property of the system 48
4.1.3.2 Dynamic spreading of liquid droplets………………………49
4.2 Nano Channel Flow ……………………………………………………50
4.2.1 Results and Discussion……………………………………………51
4.2.1.1 Wall Dragged Flow……………………………………51
(a) Velocity profiles………………………………………………52
(b) Density profiles ………………………………………………52
(c) Pressure profiles………………………………………………53
4.2.1.2 Pressure Driven Channel Flow…………………………………53
(a) Velocity profiles ……………………………………………………54
(b) Density profiles………………………………………………………55
(c) Pressure profiles ……………………………………………………55
(d) Shear stress profiles ………………………………………………56
(e) Accommodation coefficient …………………………………………56
(f) Velocity profiles of water fluid…………………………………57
(g) Velocity profiles of ethane fluid ………………………………58
4.2.1.3 Summary ……………………………………………………………59
CHAPTER FIVE SUMMARY AND CONCLUSION …………………………………79
5.1 Summary …………………………………………………………………79
5.2 Conclusions ……………………………………………………………80
5.2 Future Work ……………………………………………………………83

REFERENCES
1. 尹邦耀,“奈米時代”,五南圖書出版公司,台北市,2002.
2. Young, T., “An Essay on the Cohesion of Fluids”, Philos. Trans. R. Soc. London, Vol. 95, pp.65-87, 1805.
3. Maruyama, S., Kurashige, T., Matsumoto, S., Yamaguchi, Y., and Kimura, T., “Liquid Droplet in Contact with a Solid Surface", Microscale Thermophysical Engineering, Vol. 2, No. 1, pp. 49-62, 1998.
4. Yang, J., and Koplik, J., “Terraced Spreading of Simple liquids on Solid Surfaces”, Physical Review A, Vol. 46, No. 12, pp. 7738-7749, 1992.
5. Remootrere, P., Mertz, J. E., Scriven, L. E., and Davis, H. T., “Wetting Behavior of a Lennard-Jones System”, Journal of Chemical Physics, Vol. 110, No. 5, pp. 2621-2628, 1999.
6. Ruijter, M. D., Blake, T. D., Clarke, A., and Coninck, J. D., “Droplet Spreading: a Tool to Characterize Surfaces at the Microscopic Scale”, Journal of Petroleum Science and Engineering, Vol. 24, pp. 189-198, 1999.
7. Chan, D. Y. C., and Horn, R. G., “The Drainage of Thin Liquid Films between Solid Surfaces”, Journal of Chemical Physics, Vol. 83, No. 10, pp. 5311-5324, 1985.
8. Hannon, L., LIE, G. C., and CLEMENTI, E., “Molecular Dynamics Simulation of Channel Flow”, Physics Letters A, Vol. 119, No. 4, pp. 174-177, 1986.
9. Koplik, J., Jayanth, R., Banavar, and Jorge F. Willemsen, “Molecular Dynamics of Poiseuille Flow and Moving Contact Lines”, Physics Review Letters, Vol. 60, No. 13, pp.1282-1285, 1987.
10. Heinbuch, U., and Fischer, J., “Liquid Flow in Pores: Slip, No-Slip, or Multilayer Sticking”, Physical Review A, Vol. 40, No. 2, pp. 1144-1146, 1989.
11. Todd, B. D., Evans, D. J., and Daivis, P. J. “Pressure Tensor for Inhomogeneous Fluids”, Physical Review E, Vol. 52, No. 2, pp. 1627-1638, 1995.
12. Travis, K. P., and Gubbins, K. E., “Poiseuille Flow of Lennard-Jones Fluids in Narrow Slit Pores”, Journal of Chemical Physics, Vol. 112, No. 4, pp.1984-1994, 1999.
13. Fan, X. J., Phan-Thien, N., Yong, N. T., and Diao, X., “Molecular Dynamics Simulation of a Liquid in a Complex Nano Channel Flow”, Physics of Fluids, Vol. 14, No. 3, pp.1146-1153, 2001.
14. Jabbarzadeh, A., Atkinson, J. D., and Tanner, R. I., “Rheological Properties of Thin Liquid Films by Molecular Dynamics Simulation”, Journal of Non-Newtonian Fluid Mechanics, Vol. 69, pp.169-193, 1997.
15. Hu, Y. Z., Wang, H., Guo, Y., and Zheng, L. Q., “Simulation of Lubricant Rheology in Thin Film Lubrication Part I: Simulation of Poiseuille Flow”, Wear, Vol. 196, pp. 243-248, 1996.
16. Hu, Y. Z., Wang, H., Guo, Y., and Zheng, L. Q., “Simulation of Lubricant Rheology in Thin Film Lubrication Part II: Simulation of Couette Flow”, Wear, Vol. 196, pp. 249-253, 1996.
17. Gibbs, J. W., The Scientific Papers of Journal of Willard Gibbs, Vol. 1, Thermodynamics. New York: Longmans, Green, pp. 434, 1906.
18. Irving, J. H., and Kirkwood, J. G., “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics”, Journal of Chemical Physics, Vol. 18, No. 6, pp.817-829. 1949.
19. McQuarriw, D. A., Statistical Mechanics, Harper & Row, New York, pp. 515, 1976.
20. Goldsten, H., Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA, pp. 82-84. 1980.
21. Lennard-Jones, J. E., “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature”, Proc. Roy. Soc. (Lond.), Vol. 106A, pp. 441, 1924; “The Determination of Molecular Fields. II. From the Equation of State of Gas”, Proc. Roy. Soc. (Lond.), Vol. 106A, pp. 463, 1924.
22. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., “The Missing Term in Effective Pair Potential”, Journal of Physics Chemistry, Vol. 91, No. 24, pp. 6629-6271, 1987.
23. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz. K. M., Rerguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., “A Second Generation Force for the Simulation of Proeins, Nucleic Acids, and Organic Molecules”, Journal of American Society, Vol. 117, pp. 5179-5197, 1995.
24. Spohr, E., “Computer Simulation of the Water/Platinum Interface”, Journal of Physics Chemistry, Vol. 93, pp. 6171-6180, 1989.
25. Blomer, J., and Beylich, A. E., “MD-Simulation of Inelastic Molecular Collisions with Condensed Matter Surfaces”, Proc. Of 20th International Symp. On Rarefied Gas Dynamics, Beijing, pp. 392-397, 1997
26. Haile, J. M., “Molecular Dynamics Simulation Elementary Methods”, John Wiley & Sons, Inc., New York, 1992.
27. Verlet, L., “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Physics Review, Vol. 159, pp. 98, 1967.
28. Quentrec, B., and Brot, C., “New method for searching for neighbors in molecular dynamics computations”, Journal of Computation Physics, Vol. 13, pp. 430-432, 1975.
29. Knuth, D., “The Art of Computer Programming”, Addison-Wesley, Reading, MA., 1973.
30.Allen, M. P., Tildesley, D. J., “Computer Simulation of Liquids”, Oxford University Press, New York, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top