跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭昇宗
研究生(外文):KUO SHENG-TZUNG
論文名稱:散熱座熱流性能之實驗研究
論文名稱(外文):FLUID FLOW AND HEAT TRANSFER FOR CONFINED HEAT SINKS
指導教授:洪英輝
指導教授(外文):HUNG YING-HUEI
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:165
中文關鍵詞:散熱座暫態液晶法熱傳係數流阻孔隙率
外文關鍵詞:Heat SinkTransient Liquid CrystalHeat Transfer CoefficientFrictionPorosity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,已成功地發展出一套新修正暫態液晶量測方法來探討矩型渠道中不加裝與加裝散熱座之熱流特性。同時,也針對此類問題的局部及平均有效熱流特性做一系列參數研究,這些影響參數與情況包括渠道入口之空氣預熱溫度,流速及散熱座種類。
從熱傳方面考量,渠道入口之空氣預熱溫度對於散熱座之有效局部和平均熱傳係數沒有顯著的影響;而有效局部及平均熱傳係數則隨著流速增加或矩形渠道之孔隙率降低而遞增。在特定入口流速下,完全限制和無限制之散熱座分別具有最大及最小的有效平均熱傳係數;在不同流速下,本研究針對各類型被限制散熱座提出一條新的平均有效熱傳係數經驗公式。另外,亦針對散熱座被限制空間而產生之熱傳增益,提出了兩個校正係數K1和K2。對於局部熱傳特性,在研究中發現:無限制散熱座之局部熱傳係數沿著流向而遞減,其最大熱傳出現在散熱座入口區域;而部分與完全限制散熱座之局部熱傳係數首先從散熱座入口處遞增到 X=0.1-0.15處,然後再沿著流向而遞減,其最大局部熱傳通常出現於X=0.1-0.15區間。
從流阻方面考量,整個渠道壓降則隨著流速增加或渠道之孔隙率降低而遞增;在特定入口流速下,完全限制和無限制之散熱座分別具有最大及最小的壓降。
最後,本實驗更進一步引入了一個熱傳增益量j/f 的觀念。根據實驗數據發現:對於特定的散熱座,j/f值幾乎與雷諾數無關;對於各類型的散熱座,完全限制與無限制之散熱座分別具有最大及最小的j/f值,其比值分別為0.0603及0.0124。

A series of experimental investigations with a new modified transient liquid crystal method on the studies related to the fluid flow and heat transfer characteristics in a channel installed without and with a heat sink have been successfully performed. The parametric studies on the local and average effective heat transfer characteristics for confined heat sinks have been explored. The influencing parameters and conditions include air preheating temperature at channel inlet(ΔT), flow velocity (V) and heat sink types.
From the thermal aspect, the effect of the air preheating temperature on local and average effective heat transfer coefficients of confined heat sinks is not significant. The local and average effective heat transfer coefficients increase with increasing flow velocity. The average effective heat transfer coefficient increases with decreasing channel porosity; the highest and lowest average effective heat transfer coefficients can be found for fully-confined and unconfined heat sinks at a specific channel inlet velocity, respectively. A new empirical correlation of average effective heat transfer coefficient for confined heat sinks with various flow velocities is proposed. In addition, two correction factors of K1 and K2 representing average heat transfer enhancement due the confinement effect of confined heat sinks are proposed. The local heat transfer coefficient gradually decreases along the streamwise direction for unconfined heat sinks; and the maximum heat transfer is generally existed around the entrance region of unconfined heat sinks; while, for partially-confined and fully-confined heat sinks, the heat transfer coefficient increases from the entrance region of the confined heat sink to X=0.1-0.15 and then gradually decreases along the streamwise direction. A maximum heat transfer is generally existed around X=0.10-0.15 for confined cases.
From the frictional aspect, the overall channel pressure drop increases with increasing flow velocity or decreasing channel porosity; the highest and lowest pressure drops can be found for fully-confined and unconfined heat sinks at a specific channel inlet velocity, respectively.
Finally, a concept of the amount of enhanced heat transfer (AEHT) is introduced and defined as the ratio of j/f. The j/f ratio is almost independent of Reynolds number for a specific confined heat sink. The maximum and minimum j/f ratios are 0.0603 and 0.0124 for fully-confined and unconfined heat sinks, respectively.

ABSTRACT i
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix
NOMENCLATURE xv
CHAPTER 1 INTRODUCTION 1
1.1 RATIONALE 1
1.2 LITERATURE SURVEY 2
1.2.1 Heat Sink 2
1.2.2 Transient Liquid Crystal Method 4
1.3 RESEARCH OBJECTIVES 7
1.4 THESIS ORGANIZATION 8
CHAPTER 2 THE EXPERIMENTS 10
2.1 DESCRIPTION OF EXPERIMENTAL FACILITIES 10
2.1.1 Air Supply Facilities 10
2.1.2 Test Section 11
2.1.3 Heat Sinks 12
2.1.4 Image Capture System 12
2.1.5 Apparatus and Instrumentation 13
2.2 DATA ACQUISITION AND CONTROL 14
2.3 EXPERIMENTAL PROCEDURE 15
(A) Starting Procedure 15
(B) Shutdown Procedure 16
2.4 METHOD OF DATA REDUCTION 17
2.4.1 Evaluation of Heat Transfer Coefficient of HeatSink with Traditional TransientLiquidCrystalTechnique 17
2.4.2 Evaluation of Heat Transfer Coefficient of Heat Sink
with a Modified Transient Liquid Crystal Technique 20
(A) Model (I) 20
(B) Model (II) 21
(C) Model (III) 21
(D) Model (IV) 21
2.5 TEST MATRIX 24
2.6 UNCERTAINTY ANALYSIS 24
CHAPTER 3 RESULTS AND DISCUSSION 57
3.1 HEAT TRANSFER IN A RECTANGULAR HOLLOW CHANNEL 57
3.1.1 DEFINITION OF HEAT TRANSFER PARAMETERS 58
TABLE OF CONTENTS (cont'd)
Page
3.1.2 TRANSIENT VARIATION OF AIR TEMPERATURE AT CHANNEL
IMLET 58
3.1.3 LOVCAL HEAT TRANSFER CHARACTERISTICS 59
3.1.4 AVERAGE HEAT TRANSFER CHARACTERISTICS 60
3.2 HEAT TRANSFER IN A CHANNEL INSTALLED WITH HEAT SINKS 61 3.2.1 DEFINITION OF HEAT TRANSFER PARAMETERS 62 3.2.2 TRANSIENT VARIATION OF AIR TEMPERATURE AT CHANNEL
INLET 62
3.2.3 AVERAGE HEAT TRANSFER CHARACTERISTICS 63
(A) Parametric Studies 63
(a) Effect of Air Preheating Temperature 64
(b) Effect of Flow Velocity 64
(c) Effect of Heat Sink Type 66
(B) New Correction Factors for Confined Heat Sinks 69
3.2.4 LOCAL HEAT TRANSFER CHARACTERISTICS 70
(A) Distribution of Local Heat Transfer Parameters 71
(B) Parametric Studies 72
(a) Effect of Air Preheating Temperature 72
(b) Effect of Flow Velocity 73
(c) Effect of Heat Sink Type 73
3.2.5 OVERALL CHANNEL PRESSURE DROP 74
(A) Parametric Studies 74
(B) Correlations of the Amount of Enhanced Heat Transfer 75
CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS 137
4.1 CONCLUSIONS 137
4.2 RECOMMENDATIONS 140
REFERENCES 141
APPENDIX A COLOR CALIBRATION OF LIQUID CRYSTALS WITH
TEMPERATURE 144
APPENDIX B EMPIRICAL CORRELATIONS FOR AIR PROPERTIES 146
APPENDIX C DETERMINTION OF THERMAL CONDUCTIVITY OF CHANNEL
WALL MATERIAL 150
APPENDIX D UNCERTAINTIES OF EXPERIMENTAL DATA 154

Camci, C., Kim, K., and Hippensteele, S. A., 1992, “A New Hue Capturing Technique for the Quantitative Interpretation of Liquid crystal Image Used in Convective Heat Transfer Studies,” ASME J. Turbomachinery, Vol.114, pp.765-775.
Camci, C., Kim, K., Hippensteele, S. A., and Poinsatte, P. E., 1993, “Evaluation of a Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces,” ASME J. Heat Transfer, Vol.115, pp.311-318.
Chien, C. H., 1998, “Study of Heat Transfer Measurement on Cooling Fin of Internal Combustion Engine by Liquid crystal Thermography,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
Cooper, T. E., Field, R. J., and Meyer, J. F., 1975, “Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer,” ASME J. Heat Transfer, Vol.97, pp.442-450.
Ekkad, S. V., Zapata, D., and Han, J. C., 1995, “Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method,” ASME Paper No. 95-GT-10.
Ellison, G. N., 1989, Thermal Computations for Electronic Equipment, van Nostrand Reinhold Co., New York.
Hippensteele, S. A., 1983, “Evaluation of a Method for Heat Transfer measurements and Thermal Visualization Using a composite of a Heater Element and Liquid crystal,” ASME J. Heat Transfer, Vol.105, pp.184-189.
Hwang, G. J., Wu, C. C.,and Chao, C. H., 1995, “Investigation of Non-Darcian Forced Convection in an Asymmetrically Heated Sintered Porous Channel,” ASME J. Heat Transfer, Vol.117, pp.725-731.
Ishizuka, M., Yokono, Y., and Hisano, K., 1999, “Experimental Study on The Performance of Compact Heat Sink for LSI Packages,” ASME Advances in Electronic Packaging, Vol. 26-1.
Jeng, T. M, 2002, “Fluid Flow and Heat Transfer Behavior in Porous Channels,” Ph.D. Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
Jeng, T. M., Wang, M. P., Hwang, G. J., and Hung, Y. H., 2001, “Heat Transfer Behavior in Rectangular Channels with Different Wall Material Types,” Accepted by Int. J. Experimental Heat Transfer.
Kim, S. J., and Kim, D., 1999, “Forced Convection in Microstructures for Electronic Equipment Cooling, “ ASME J. Heat Transfer, Vol. 121, pp. 635-645.
Kraus, A. D., and Bar-Cohen, A., 1995, Design and Analysis of Heat Sinks, John Wiley and Sons, Inc., New York.
Madhusudan, L., and Bar-Cohen, A., 1998, “Optimization of Vertical Pin-Fin Heat Sinks in Natural Convective Heat Transfer,” In Heat Transfer 1998, Proceeding of
11 th IHTC, Vol. 3 August 23-26, Kyongju, Korea, pp.501-506.
Mills, A. F., 1962, “Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of a Circular Conduit,” J. Mech. Eng. Sci., Vol. 4, pp. 63-177.
Sparrow, E. M., and Grannis, V. B., 1990, “Pressure Drop Characteristics of Heat Exchangers Consisting of Arrays of Diamond-Shaped Pin Fins,” Int. J. Heat Transfer. Vol. 34. No. 3, pp.589-600.
Starner, K. E., and McManus, H. N., Jr., 1963, “An Experimental Investigation of Free Convection Heat Transfer from Rectangular Fin Array, ” ASME J. Heat Transfer, Vol. 85, pp. 273-278.
Valencia, A., Fiebig, M., and Mitra, K., 1995, “Influence of Heat Conduction on Determination of Heat transfer Coefficient by Liquid Crystal Thermography,” Experimental Heat Transfer, Vol.8, pp.271-279.
Wang, M. P., 2000, “Forced Convective Heat Transfer in a Rectangular Hollow or Porous Channel,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
Wolfersdorf, J., Hoecker, R., and Sattelmayer, T., 1993, “A Hybird Transient Step-Heating Heat Transfer Measurement Technique Using Heater Foils and Liquid-Ceystal Thermography,” ASME J. Heat Transfer, Vol.115, pp.319-324.
Ye, Q. L., 2001, “Multimedia Thermal CAD Package For Electronics Multilayer Structures With Compact Cold Plates,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
You, H. I., and Chang, C. H., 1997, “Numerical Prediction of Heat Transfer Coefficent for a Pin —Fin Channel Flow,” ASME J. Heat Transfer, Vol. 119, pp840-843.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top