跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/09 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫哲南
論文名稱:引擎缸內流場三維視流測試模擬
指導教授:洪哲文洪哲文引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:55
中文關鍵詞:視流
外文關鍵詞:KIVA
相關次數:
  • 被引用被引用:8
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要模擬視流測試馬達帶動真實引擎與靜態汽缸缸內紊流流場,其中靜態汽缸缸內紊流流場又可分為穩態具活塞側向排氣與穩態不具活塞下方排氣兩種。主要目的在評估較容易測試之靜態排氣裝置取代馬達帶動真實引擎的可行性與流場相似性。
研究方法之一是使用美國Los Alamos國家實驗室所發展出來的KIVA-3V Release 2三維數值模擬原始程式,並依照本論文的需求加以局部修改並在個人電腦上進行。模擬比較的基本狀態為實驗引擎進氣閥開度為3mm、5mm及7mm時之缸內流場。方法之二為利用視流實驗拍攝透明汽缸內流場,並與數值模擬結果作一比對。本研究目的即針對以靜態排氣來代替馬達帶動真實引擎之可行性與活塞面的存在對靜態進氣階段汽缸內流場的影響做一探討。並對無活塞的靜態流場、具活塞面之靜態流場及非靜態的馬達帶動真實引擎三者的流場作一比較,探討汽缸內流場細部的變化情形,包括速度場、紊流動能及流體徑線圖等。
模擬結果顯示靜態不具活塞下方排氣裝置汽缸內的流場可以反映出馬達帶動真實引擎的主要流場趨勢;而側向排氣裝置由於加裝了側向排氣管,雖然會對原本的流場造成些許破壞,但在近活塞面的位置上側向排氣裝置汽缸內的流場會因活塞面的影響與非靜態馬達帶動真實引擎有相同的趨勢。而以視流法所拍攝的流場與數值模擬的結果相互契合,也應證了以KIVA-3V數值流力模擬汽缸流場的準確性。
摘要 ……………………………………………………………………I
致謝 …………………………………………………………………. .II
目錄 …………………………………………………………………..III
表目錄 ……………………………………………………………….V
圖目錄 ……………………………………………………………….V
第一章 緒論 ……………………………………………………….. ...1
1.1引言 ……………………………………………………….. …1
1.2文獻回顧 ………………………………………………….. …1
1.3研究目的與方法 ……………………………………………...3
1.4論文架構 ……………………………………………………...5
第二章 計算流力模式 ………………………………………………..6
2.1 KIVA簡介 …...…………………………………………….…6
2.2 統御方程式 ………………………………………………….7
2.3 數值方法 …………………………………………………...11
2.4 KIVA-3V的邊界條件 …..………………………………….12
2.4.1 物理邊界條件 …………………………………………12
2.4.2 數值邊界條件 …………………………………………14
2.5 KIVA-3V電腦程式架構 ……………………………………14
第三章 流場數值模擬與視流實驗架構 …….……………………...15
3.1 計算網格的建立與邊界條件 ……………………………...15
3.1.1 網格建立 ………………………………………………15
3.1.2 邊界條件 ………………………………………………16
3.2 視流實驗 ………………………………………………….16
3.2.1 實驗設備 ……………………………………………17
3.2.2 實驗方法 ……………………..……………………..18
第四章 結果與討論 ………..………………………………………19
4.1 側向排氣裝置汽缸內流場 ……………………………...19
4.1.1 速度場 ………………………………………………19
4.1.2 紊流動能 ……………………………………………20
4.1.3 流體徑線分佈 ………………………………………20
4.2 靜態不具活塞汽缸內流場 ……………………….……..21
4.2.1 速度場 ………………………………………………21
4.2.2 紊流動能 …………………………..………………22
4.2.3 流體徑線分佈 ………………………………………22
4.3 非靜態真實引擎汽缸內流場 ………………………...…22
4.3.1 速度場 ………………………………………………22
4.3.2 紊流動能 …………………………..………………23
4.3.3 流體徑線分佈 ………………………………………23
4.4 三者汽缸內流場的比較 ………………………………...24
4.4.1 速度場 ………………………………………………24
4.4.2 紊流動能 …………………………..………………25
4.5 實驗與模擬比較 ……………………………………...…25
4.5.1 XZ平面 …………………………………………..…25
4.5.2 YZ平面 …………………………..…………..…..…26
4.5.3 XY平面 ………………………………………..……26
第五章 結論與建議 …………………………………………………27
5.1 結論 ……………………………………………………….27
5.2 建議 ……………………………………………………….27
參考文獻 ……………………………………………………………..29
[1] Tadayoshi Hirotomi, Isao Nagayama, Shoji Kobayashi, and Masanobu Yamamasu, “Study of Induction Swirl in a Spark Ignition Engine,” SAE 810496, 1981.
[2] Acroumanis, C., Hu, Z. and Whitelaw, J. H., “Steady Flow Characterization of Tumble Generating Four-Valve Cylinder Heads,” Proceedings of the Institution of Mechanical Engineers, Part D, Vol. 207, pp. 203-210, 1993.
[3] 劉昭忠、沈澄宇, “商用計算流體力學軟體在引擎模擬的應用,”機械工業雜誌, 2001十一月號.
[4] Coz, J. L., Henriot, S. and Pinchon, P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark-Ignition Engine-Focus on Cycle-Resolved Turbulence,” SAE 900056, 1990.
[5] Ruland, C. J., Pieper, C. M. and Hessel, R., “Intake and Cylinder Flow Modeling with a Dual-Valve Port,” SAE 930069, 1993.
[6] Kong, S. C. and Hong, C. W., “Multidimensional Intake Flow Modeling of a Four-stroke Engine with Comparisons to Flow Velocity Measurements,” SAE 970883, 1997.
[7] Kong, S. C. and Hong, C. W., “Comparisons of Computed and Measured Flow Process in a Four-Stroke Engine,” ASME 97-ICE-49, ICE-Vol.29-2, pp.19-25, 1997.
[8] Hong, C. W. and Tarng, S. D., “Comparison between Measurements and Predictions of The In-Cylinder tumble Flow Generated by a Port-Valve-Liner Assembly,” ASME 98-ICE-144, ICE-Vol.31-2, pp.143-150, 1998.
[9] Bensler, H., Freek ,C., Beesten, B., Ritter, A. and Hentschel, W., “An Experimental and Numerical Study of the Steady-State Flow of a SI-Engine Intake Port,” SAE 982470, 1998.
[10] Faure, M. A., Sadler, M., Oversby, K. K., Stokes, J., Begg, S. M., Pommier, L. S.and Heikal, M. R., “Application of LDA And PIV Techniques to the Validation of a CFD Model of a Direct Injection Gasoline Engine,” SAE 982705, 1998.
[11] Joh, M., Kang, Y. H., Seok, H. N. and Kyu, H. C., “Numerical Prediction of Stratified Charge Distribution in a Gasoline Direct-Injection Engine-Parametric Studies,” Direct Injection SI Engine Technology 1999, pp.87-103, 1999.
[12] 羅治平, “單缸透明引擎數值模擬與紊流量測,” 國立清華大學動力機械工程學系碩士論文, 1995.
[13] 戴良哲, “單缸引擎缸內流場邊界條件建立以及三維數值模擬,” 國立清華大學動力機械工程學系碩士論文, 1996
[14] 羅金國, “透明引擎在靜態操作下之缸內流場光學量測與數值模擬,” 國立清華大學動力機械工程學系碩士論文, 1997.
[15] 唐賢達, “機車引擎進氣缸內流場量測與KIVA3V模擬,” 國立清華大學動力機械工程學系碩士論文, 1998.
[16] 鄭文迪, “實體機車引擎進氣紊流流場靜態與非靜態數值模擬,” 國立清華大學動力機械工程學系碩士論文, 1999.
[17] 楊雅清, “側向排汽缸內滾流場模擬與分析,”國立清華大學動力機械工程學系碩士論文, 2000.
[18] Amsden, A. A., “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves,” Los Alamos National Lab. LA-13313-MS, 1997.
[19] Amsden, A. A., “KIVA-3V ,Release 2 ,Improvements To KIVA-3V,” Los Alamos National Lab. LA-13608-MS, 1999.
[20] Hirt, C. W., Amsden, A. A. and Cook, J. L., “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds,” J. Computational Physics, Vol. 14, pp. 227-253, 1974.
[21] Pracht, W. E., “Calculating Three-Dimensional Fluid Flows at All Speeds with an Eulerian-Lagrangian Computing Meah,” J. Computational Physics, Vol. 17, pp. 132-159, 1975.
[22] Yang, S. L., “A Short Course On The KIVA Code,” Mechanical Engineering-Engineering Mechanics Department Michigan Technological University, 1999.
[23] Yasuki, N. and Yoshimichi, T., “Atlas Of Visualization,” The Visualization Society of Japan, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top