跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昌駿
研究生(外文):Chang-Chun Lee
論文名稱:具發泡式緩衝層之晶圓級封裝設計與可靠度分析
論文名稱(外文):Design and Reliability Analysis of Wafer Level Package with Bubble-Like Buffer Layer
指導教授:江國寧
指導教授(外文):Kuo-Ning Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:69
中文關鍵詞:發泡基板緩衝層晶圓級封裝可靠度
外文關鍵詞:Bubble-like plateBuffer layerWLPReliability
相關次數:
  • 被引用被引用:4
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
近年來半導體隨著電腦與光電通訊等產品功能的急速提昇及多元化、可攜性與輕巧化的需求,其電子構裝已脫離了傳統的技術而朝高功率、高密度、輕、薄與微小化等高精密度製程發展。而晶片尺寸級封裝、覆晶與晶圓級封裝正符合此一趨勢要求,因此已逐漸成為下一世代之封裝主流。然晶圓級封裝目前只適用於尺寸小之晶片,因為大尺寸晶片仍有可靠度之問題待需克服。
為了解決上述之問題,本文將針對一新式晶圓級封裝結構設計進行可靠度研究。與其它型式封裝比較,此封裝結構設計創新使用發泡基板,利用其與緩衝層所組成的緩衝機制,以減緩錫球因晶片與基板材料熱膨脹量不匹配所承受之應力,提高其可靠度壽命。故本研究著重於發泡基板與緩衝層對於影響此新式封裝體可靠度之探討,對其進行一系列包括幾何尺寸與材料特性等之非線性有限單元參數化分析。此外,晶片厚度參數之效應亦考慮於本研究內。研究結果顯示,發泡基板與緩衝層均提供緩衝應力之功效,且緩衝層之存在與否對於封裝結構錫球之可靠度深具影響。若封裝體內有緩衝機制之設置,則晶片厚度效應影響錫球可靠度之程度有限。
至於緩衝層其填充式樣的變化對封裝體錫球可靠度影響之高低,於本研究裡亦予以詳加探討分析;由研究結果可知,具緩衝層、無填滿充填式樣封裝有較佳之可靠度;且分析比較結果顯示,緩衝層之有無比填滿與否對封裝結構可靠度更具影響力。
本研究以有限單元軟體的模擬,將此新式晶圓級封裝結構設計進行加速熱循環試驗可靠度規範之測試。其參數化分析結果皆已完成比較與探討。期以作為對日後相關之晶圓級封裝結構可靠度設計上之參考依據。
Recent years, semiconductor chip applied on the computer and optical communication products need to satisfy the demands of smaller, lighter, high I/O density and lower cost. The next generation packages such as CSP, flip chip and wafer level package(WLP)have enjoyed the mainstream. However, the WLP is only suitable to smaller chip in current because the board level reliability for larger one is still critical.
In order to enhance the WLP reliability for larger chip, this research proposed a new WLP design ─ bubble-like buffer layer WLP. Compared to other types of package, it has a novel packaging structure with the bubble-like plate. The research studies the effects of the dimensions and material properties of bubble-like plate and buffer layer on the WLP reliability. A 2-D nonlinear finite element analysis for the proposed new WLP is conducted. The results reveal that both bubble-like plate and buffer layer provide compliant effects. However, the buffer layer has a significant effect on enhancing the solder joint reliability. Moreover, if packages have the buffer structure, the chip thickness does not impact its reliability.
On the other hand, the difference between the no-filled and filled buffer layers also affect the reliability of solder joint. The results reveal the package with the buffer layer and the no-filled bubble-like plate has the better reliability. Compared to the no-filled bubble-like plate, the buffer layer can enhance the package reliability further.
Furthermore, the results presented in the research can be used as a design guideline for bubble-like buffer layer WLP.
目錄
中文摘要
英文摘要
目錄…………………………………………………………. Ⅰ
表目錄………………………………………………………. Ⅲ
圖目錄………………………………………………………. Ⅳ
第一章 緒論………………………………………………... 1
1.1 電子封裝簡介……..……………………………………. 1
1.1.1 晶圓/晶片尺寸級封裝(WL-CSP)技術.. 1
1.1.2 覆晶技術..………………………………… 2
1.1.3 封裝力學行為和可靠度..…………… …3
1.2 研究動機….…………………………………………… 4
1.3 文獻回顧……….……………………………………… 4
1.4 研究目標….…………………………………………… 7
第二章 理論基礎………………………………………….. 9
2.1 錫球幾何外形預測……..……………………………….. 9
2.1.1 截球法..……………………………………9
2.1.2 能量法…………………………..…………11
2.2 非線性理論……..……………………………………… 12
2.2.1 Newton-Raphson法.………………………13
2.2.2 降伏準則(Yield Criterion)…………14
2.3 可靠度估算準則(Reliability Criterion)……….………16
第三章 有限單元分析模型……………………………….. 18
3.1 有限單元模型之建立….……………………………….. 18
3.1.1 發泡式緩衝層之晶圓級封裝結構模型..…19
3.1.2 發泡基板彎曲角度參數化之晶圓級封裝結構模型…19
3.1.3 晶圓級尺寸之無底膠覆晶封裝和Tessera mBGA封裝結構模型……………20
3.2 有限單元分析…….……………………………………. 21
3.2.1 各項材料參數之設定.…………………… 21
3.2.2 分析條件和步驟…………………………..22
3.2.2.1 邊界條界…….……………22
3.2.2.2 加速熱循環試驗模擬…….23
第四章 結果分析與討論………………………………….. 24
4.1 發泡式緩衝層之晶圓級封裝結構加速熱循環試驗之模擬結果. 24
4.2 發泡式緩衝層之晶圓級封裝之參數有限單元設計…..……… 25
4.2.1 結構模型材料性質之參數化………..……25
4.2.2 結構模型幾何尺寸之參數化………………27
4.3 具不同發泡式緩衝層充填式樣之晶圓級封裝結構加速熱循環試驗之模擬結果……………………………………… 29
4.4 與晶圓級尺寸無底膠覆晶封裝和Tessera mBGA封裝結構之比較………………………………………………….. 30
4.4.1 晶圓級尺寸之無底膠覆晶封裝結構加速熱循環試驗之模擬結果……………..…………………………... 30
4.4.2 晶圓級尺寸之Tessera mBGA封裝結構加速熱循環試驗之模擬結果…….……………….………………... 31
4.4.3 結果分析與討論………..……31
第五章 結論與展望………………………………………33
參考文獻……………………………………………………. 35
參考文獻
1. J. H. Lau, “Ball Grid Array Technology,” McGraw-Hill, N.Y., 1995.
2. J. H. Lau, “Chip Scale Package, CSP,” McGraw-Hill, N.Y., 1999.
3. J. H. Lau, “Flip Chip Technologies,” McGraw-Hill, N.Y., 1995.
4. J. H. Lau, “Low Cost Flip Chip Technologies:/for DCA, WLCSP, and PBGA Assemblies,”McGraw-Hill, N.Y., 2000.
5. S. Rudolf, “Surface Mount Technology,” Oxford, Boston, 1994.
6. V. Solberg, “Design Guidelines for Surface Mount and Fine Pitch Technology,” McGraw-Hill, N.Y., 1996.
7. Bruce M. Romenesko, “Ball Grid And Flip Chip Technologies: Their Histories and Prospects,” The International Journal of Microcircuits and Electronic Packaging, Vol. 19, NO.1, pp.64 -74, 1996.
8. T. Cinque, K. Gilleo, “Polymer Materials the Empowerment of Flip Chips,” Flip Chip, BGA, TAB & AP Symposium, 1997.
9. L. Robert, D. Zenner, “Adhesive and Conductive Adhesive Flip Chip Bonding,” International Symposium on Advanced Packaging Materials, pp.117 —119, 1997.
10. H. K. Charles, G. V. Clatterbaugh, “Solder Joint Reliability-Design Implications from Finite Element Modeling and Experimental Testing,” ASME Journal of Electronic Packaging, Vol. 112, NO. 2, pp.135 —146, 1990.
11. M. K. Shah, “Analysis of Parameters Influencing Stress in the Solder Joint of Leadless Chip Capacitors,” ASME Journal of Electronic Packaging, Vol. 118, NO. 3, pp.122 —126, 1990.
12. K. N. Chiang, C. A. Yuan, “An Overview of Solder Bump Shape Prediction Algorithms With Validations,” IEEE Transactions on Advanced Packaging, Vol. 24, NO. 2, pp.158 —162, 2001.
13. C. M. Liu, K. N. Chiang, “Solder Shape Design and Thermal Stress/Strain Analysis of Flip Chip Packaging Using Hybrid Method,” Int’l Symp on Electronic Materials & Packaging, pp.44 —50, 2000.
14. K. N. Chiang, W. L. Chen, “Electronic Packaging Reflow Shape Prediction for the Solder Mask Defined Ball Grid Array,” ASME Journal of Electronic Packaging, Vol. 120, pp.175 —178, 1998.
15. L. Li, B. H. Yeung, “Wafer Level and Flip Chip Design Through Solder Prediction Model and Validation,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, NO. 4, pp. 650 —654, 2001.
16. B. H. Yeung, T. Y. Lee, “Evaluation and Optimization of Package Processing, Design, and Reliability through Solder Joint Profile Prediction,” IEEE Electronic Components and Technology Conference, pp.925 —930, 2001.
17. K. N. Chiang, "Wafer Level Packaging Using Bubble-Like Flex Substrate," Taiwan Patent 473,960, Jan. 21, 2002.
18. P. Garrou, “Wafer Level Chip Scale Packaging (WL-CSP): An Overview,” IEEE Transactions on Advanced Packaging, Vol. 23, NO. 2, pp. 198 —205, 2000.
19. J. Simon, “Future Wafer Level CSP Packaging,” IEMT/IMC Symposium, 2nd 1998 , pp. 30 —34, 1998.
20. A. Badihi, “Ultrathin Wafer Level Chip Size Package,” IEEE Transactions on Advanced Packaging, Vol. 23, NO. 2, pp. 212 —214, 2000.
21. N. Kelkar, R. Mathew, L. Nguyen, “MicroSMD- A Wafer Level Chip Scale Package”, IEEE Transactions on Advanced Packaging, Vol. 23, NO. 2, pp. 227 —232, 2000.
22. D. H. Kim, P. Elenius, “Deformation and Crack Growth Characteristics of SnAgCu vs 63Sn/Pb Solder Joints on a WLP in Thermal Cycle Testing,” IEEE Electronic Components and Technology Conference, pp. 681 —686, 2001.
23. T. Kim, D. H. Lee, J. K. Lee, P. S. Ahn, B. U. Kang, H. S. Moon, C.H. Choi, “Thermo-Mechanical Behavior of Elastomer for CSP and Reliability,” IEEE ISIE 2001, pp. 701-706, 2001.
24. Y. Yamaguchi et al., “A Wafer Level Chip Size Package Embedded with a Compliant Layer,” Proc. IMAPS Advanced Technology Workshop on Chip Scale Packaging, Sep. 2000.
25. Y. Yamaguchi et al., “Development of Low-cost Highly Reliable Wafer Process Package,” IEEE Electronic Components and Technology Conference, pp. 40-46, 2001.
26. C. Mitchell, “Assembly and Reliability Study For the Micro-Ball Grid Array,” Electronics Manufacturing Technology Symposium, Vol. 1, pp. 344 —346, 1994.
27. Pei-Haw Tsao, Chun-Liang Chen, Yu-Jen Huang, Chender Huang, “Effects of Assembly Methodology on Manufacturing Induced Stress in μBGA Packages,” IEEE Electronic Components and Technology Conference, pp. 653 —656, 1999.
28. F. Y. Xu, R. Bymark, B. L. Hsu “A Novel Epoxy Encapsulant For CSP (/Spl Mu/BGA(R))-New Hydrophobic Epoxy Elastomer,” International Symposium on Advanced Packaging Materials, pp. 83 —89, 2000.
29. P. L. Tu, Y. C. Chan, K. C. Hung, K. L. Lai, “Comparative Study of Micro-BGA Reliability Under Bending Stress,” IEEE Transactions on Advanced Packaging, Vol. 23, NO. 4, pp. 750 —756, 2000.
30. P. Lall, K. Banerji, “Assembly-Level Reliability Characterization of Chip-Scale Packages,” Electronic Components & Technology Conference, 1998. 48th IEEE , pp. 482 —494, 1998.
31. H. A. Reed, M. S. Bakir, C. S. Patel, K. P. Martin, J. D. Meindl, P. A. Kohl, “Compliant Wafer Level Package(CWLP) With Embedded Air-gaps for Sea of Leads(SoL) Interconnections,” Proceedings of the IEEE 2001 International , pp. 151 —153, 2001.
32. C. S. Patel, et al., “Low Cost High Density Compliant Wafer Level Package,” International Conf. on High-Density Interconnect and Systens Packaging, pp. 261-268, 2000.
33. J. Novitsky, D. Pedersen, “FormFactor Introduces an Integrated Process for Wafer-Level Packaging, Burn-in Test, and Module Level Assembly,” IEEE Proceedings. International Symposium, pp. 226 —231, 1999.
34. R. Darveaux, K. Banerji, “Fatigue Analysis of Flip Chip Assemblies Using Thermal Stress Simulations and A Coffin-Manson Relation,” Electronic Components and Technology Conference, 1991. Proceedings., 41st , pp.797 —805, 1991.
35. Z. Qian and S. Liu, “On the Life Prediction and Accelerated Testing of Solder Joint,” EEP-Vol. 24, Thermo-Mechanical Characterization of Evolving Packaging Materials and Structures, ASME, pp. 1-12, 1998.
36. V. Gektin, A. Bar-Cohen, J. Ames, “Coffin-Manson Fatigue Model of Underfilled Flip-Chips,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 20, NO. 3, pp. 317 —326, 1997.
37. J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability: of the Importance of Model Validation,” InterPack, 1999.
38. L. S. Goldmann, “Geometric Optimization of Controlled Collapse Interconnections,” IBM J. Res. Develop., Vol. 13, May, pp. 251-265, 1969.
39. S. M. Heinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, “Prediction of Solder Joint Geometries in Array-Type Interconnects,” ASME J. Electron. Packag., Vol. 118, pp. 114-121, 1996.
40. K. A. “Brakke, Surface Evolver Manual,” version 2.01 Minneapolis, MN: The Geometry Center, 1996.
41. R. D. Cook, D. S. Malkus, and M. E. Plesha, “Concepts and Applications of Finite Element Analysis,” 3rd ed., pp. 504-505, Wiley, N.Y., 1989.
42. 羅志正“數值分析,” 東華, 台北, pp.48-60, 1991.
43. ANSYS Structural Nonlinearities User’s Guide for Revision 5.1 Vo1. 1, pp.2-13-2-19.
44. L. F. Coffin, Jr., and N.Y. Schenectady, “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Tran. ASME, 76, pp. 931-950, 1954.
45. S. S. Manson, “Thermal Stress and Low Cyclic Fatigue,” McGraw-Hill Book Co., Inc., Ny., pp. 125-192, 1966.
46. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-9, pp. 99-104, 1986.
47. B. Z. Hong, T. D. Tuan, and L. Burrell, “Anisothermal Fatigue Analysis of Solder Joints in a Convective CBGA Package Under Power Cycling,” EEP-Vol.17, Sensing, Modeling and Simulation in Emerging Electronic Packaging, ASME, pp.39-46, 1996.
48. J. H. Lau, “Solder Joint Reliability : Theory and Applications,” Van Nostrand Reinhold, 1991.
49. W. B. Hampshire, “Electronic Material Handbook,” Materials Park, OH:ASM International., 1989.
50. P. J. Adams, “Thermal Fatigue of Solder Joints in Micro-Electronic Devices,” Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology, 1986.
51. S. Rzepka, M. A. Korhonen, “The Effect of Underfill Delamination on the Reliability of Flip Modules,” Application of Fracture Mechanics in Electronic Packaging, Vol. 20, pp.73-83, 1997.
52. S. T. Chen et al., “Out-of Plane Thermal Expansion Coefficient of Biphenyldianhydride-Phenylenediamine Polyimide Film,” Journal of Electronic Material, Vol.22, No.7, pp.797, 1993.
53. M. Pecht et al., “Characterization of Polyimide Used in high Density Interconnects,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part.B, Vol.17, No.4, pp.632, 1994.
54. M. Pecht et al., “To Cut or Not to Cut : A Thermomechanical Stress Analysis of Polyimide Thin-Film on Ceramic Structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol.18, No.1, pp.150, 1995.
55. M. A. Jog, “Effect of Elastio-Plastic Behavior of Epoxy on Thermal Stress in TAB Packaging,” The International Society for Hybrid Microelectronics, Vol.19, No.3, pp.308, 1996.
56. ANSYS User’s Manual, 00049 Updo ANSYS Revision 5.2, Vol. 3, Elements. SAS IP, Inc. pp. 4-217, 1995.
57. JEDEC, JESD22-A104-B, “Temperature Cycling,” JEDEC Standard, Electronic Industries Association, Arlington, VA, pp. 1-9, July 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊