跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何亦平
研究生(外文):Yi-Ping Ho
論文名稱:微結構自組裝技術之研究
論文名稱(外文):The Study of MEMS Self-Assembly Technology
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:83
中文關鍵詞:微機電系統微結構自組裝薄膜殘餘應力三維微光開關
外文關鍵詞:MEMSself-assemblyresidual stress3D optical-Switch
相關次數:
  • 被引用被引用:7
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
面型微加工製造技術乃根源於積體電路的平面製程技術,因此製作而成的元件大抵以二維的方式展現,在許多應用上間接受到了限制。本文針對微結構組裝的方法進行討論,並企圖以薄膜殘餘應力、光阻及超音波激振等組裝方法,達成微結構自組裝的目的。並以三維微光開關之組裝設計為主軸,進行結構設計方面之研究,以提升其精密定位之程度。
透過自行開發之MUMPs-Like面型微加工製程,本文完成以薄膜殘餘應力自組裝之三維微光開關元件,其中使用介電薄膜取代金屬薄膜,藉由可靠度測試驗證,其應力鬆弛的問題確可大幅改善。本文並針對元件之性能進行定性及定量測試,藉此提出改良之定位機構,期能藉此製作高定位精度之三維微元件,並提供微結構一更可靠及穩定的組裝方式。
Surface micro-machining technology is based on the planar integrated circuit process. Due to the nature of surface micro-machining process, a fundamental problem is its inability to produce highly 3D structures. Therefore, the applications may be limited. To accomplish 3D devices after the process, residual stress of thin film, photo-resist, and ultrasound are adopted to be the self-assembly approaches. Design and fabrication of 3D optical switch is employed to demonstrate the mechanical positioning mechanisms, such as latch and hinge.
Based on the MUMPs platform, this study has established an improved surface micromaching process (MUMPs-like process). Through this process, the stress-induced self-assembly 3D optical switch has been realized. According to the result of reliability test, stress relaxation is significantly reduced using the dielectric film instead of the metal film. Furthermore, this study intends to present a novel positioning mechanism for MEMS, particularly for micro-optical devices. Relied on that, more robust and reliable self-assembly mechanism is achieved.
中文摘要……………………………1
英文摘要……………………………2
誌謝…………………………………3
目錄…………………………………5
圖目錄………………………………6
表目錄 ……………………………8
第一章 緒論 ………………………………………9
1-1前言 ………………………………9
1-2文獻回顧與比較 …………………10
1-2.1微結構組裝機制…………10
1-2.2接點設計…………………11
1-3研究動機與目標 …………………11
第二章 設計與分析………………………………15
2-1 微結構自組裝技術………………15
2-1.1利用超音波激振進行自組裝 …16
2-1.2 利用表面張力進行自組裝 ……17
2-1.3 利用殘餘應力進行自組裝 ……18
2-2 微卡榫與接點設計………………20
2-3 陣列式自組裝系統………………21
第三章 製程與結果………………………………34
3-1製程內容…………………………34
3-1.1製程步驟………………………34
3-1.2犧牲層之製作…………………36
3-2製程結果…………………………37
3-2.1殘餘應力自組裝………………37
3-2.2光阻自組裝之困難……………38
第四章 量測與實驗架設…………………………55
4-1 殘餘應力自組裝………………55
4-1.1 應力層之可靠度測試………55
4-1.2 元件性能測試………………57
4-2 超音波激振自組裝……………61
第五章 結論……………………………………74
5-1本文貢獻………………………74
5-2未來工作………………………75
第六章 參考文獻 ………………………………77
[1] MCNC, The Multi-User MEMS Processes (MUMPs®), http://www.memsrus.com/cronos/svcsmumps.html
[2] Sandia National Lab Process, http://www.sandia.gov/
[3] T. Ebefors, E. Kälvesten, and G. Stemme, “Three dimensional silicon triple-hot wire anemometer based on polyimide joints,” Proceeding of the IEEE MEMS’98 Workshop, Heidelberg, Germany, January, 1998, pp. 93-98.
[4] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique,” Electronics Letters, 30, pp. 448-449, 1994.
[5] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Surface-micromachined micro-xyz stages for free-space microoptical bench,” IEEE Photonics Technology Letters, 9, no. 3, pp. 345-347, 1997.
[6] L. Fan, R. T. Chen, A. Nespola, and M. C. Wu, ”Universal MEMS platforms for passive RF components: suspended inductors and variable capacitors,” Proceeding of the IEEE MEMS’98 Workshop, Heidelberg, Germany, January, 1998, pp.29-33.
[7] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges,” Sensors and Actuators A, 33, pp. 249-256, 1992.
[8] Y. W. Yi and C. Liu, “Magnetic actuation of hinged microstructures,” Journal of Microelectromechanical Systems, 8, no. 1, pp. 10—17, 1999.
[9] J. W. Judy and R. S. Muller, “Magnetically actuated, addressable microstructures,” Journal of Microelectromechanical Systems, 6, no. 3, pp.249—256, 1997.
[10] T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” Journal of Microelectromechanical Systems, 6, no. 1, pp. 10-17, 1997.
[11] E. Quévy, L. Buchaillot, and Dominique Collard, “3-D self-assembling and actuation of electrostatic microstructures,” IEEE Transactions on electron devices, 48, no. 8, pp. 1833-1839, 2001.
[12] Y. C. Tai, L. S. Fan, and R. S. Muller, “IC-processed micro-motors: design, technology, and testing,” Proceeding of the IEEE MEMS’89 Workshop, Salt Lake City, UT, February, 1989, pp.1-6.
[13] M. W. Judy, Y. H. Cho, R. T. Howe, A. P. Pisano, “Self-adjusting microstructures (SAMS),” Proceeding of the IEEE MEMS’91 Workshop, Nara, Japan, February, 1991, pp. 51-56.
[14] R. T. Chen, H. Nguyen, M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2/spl times/2 optical switch,” IEEE Photonics Technology Letters, 11, no.11, pp.1396-1398, 1999.
[15] M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, “Micromirrors for adaptive-optics arrays,” The 11th International Conference on Solid-State Sensors and Actuators (Transducers ’01), Munich, Germany, June, 2001, pp.1290-1293.
[16] D. C. Miller, W. Zhang, and V. M. Bright, “Microrelay packaging technology using flip-chip assembly,” Proceedings of the IEEE MEMS’00 Workshop, Miyazaki, Japan, January, 2000, pp. 265-270.
[17] P. E. Kladitis, K. F. Harsh, V. M. Bright, and Y. C. Lee, “Three-dimensional modeling of solder shape for the design of solder self-assembled micro-electro-mechanical systems,” Proceeding of the IEEE MEMS’99 Workshop, Nashville, Tennessee, November, 1999, pp. 11-18.
[18] R.R.A. Syms, C. Gormley, and S. Blackstone, “Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors and Actuators A, 2839, pp. 1-11, 2000.
[19] R. R. A. Syms, “Self-assembled 3-D silicon microscanners with self-assembled electrostatic drives,” IEEE Photonics Technology Letters, 12, no. 11, pp. 1519-1521, 2000.
[20] V. Kaajakari, and A. Lal, “Pulsed ultrasonic release and assembly of micromachines,” The 10th International Conference on Solid-State Sensors and Actuators (Transducers''99), Sendai, Japan, June, 1999, pp. 212-215.
[21] V. Kaajakari and A. Lal, “Thermo-kinetic actuation for hinged structure batch microassembly,” Proceeding of the IEEE MEMS’02 Workshop, Las Vegas, NV, January, 2002, pp. 196-199.
[22] U. Srinivasan, D. Liepmann, and R. T. Howe, “Microstructure to substrate self-assembly using capillary Forces,” Journal of Microelectromechanical Systems, 10, no. 1, pp.17-24, 2001.
[23] K. Suzuki, I. Shimoyama, H. Miura, and Y. Ezura, “Creation of an insect-based microbot with an external skeleton and elastic joints,” Proceeding of the IEEE MEMS’92 Workshop, Travemunde, Germany, February, 1992, pp.190-195.
[24] T. Ebefors, E. Kälvesten, and G. Stemme, “New small radius joints based on thermal shrinkage of polyimide in V-grooves for robust self-assembly 3D microstructures,” Journal of Micromechanics and Microengineering, 8, pp. 188-194, 1998.
[25] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM Micromirror Array Technology for Large Optical Crossconnects,” Proceedings of SPIE, Santa Clara, CA, September, 2000, pp. 320-324.
[26] Lucent Technology, Bell Laboratories Physical Science Research, http://www.bell-labs.com/org/physicalsciences/projects/mems/mems3.html
[27] K. Uchino, “Recent trend of piezoelectric actuator developments,” Proceedings of International Symposium on Micromechatronics and Human Science (MHS’99), Nagoya, Japan, November, 1999, pp.3-9.
[28] V. Kaajakari, and A. Lal, “Electrostatic batch assembly of surface MEMS using ultrasonic triboelectricity,” Proceeding of the IEEE MEMS’01 Workshop, Interlaken, Switzerland, January, 2001, pp. 10-13.
[29] V. Kaajakari, and A. Lal, “Ultrasonically driven surface micromachined motor,” Proceedings of the IEEE MEMS’00 Workshop, Miyazaki, Japan, January, 2000, pp. 40-45.
[30] R. W. Fox and A. T. Mcdonald, Introduction To Fluid Mechanics. 4th Ed., New York, NY: Wiley, 1994.
[31] T. A. McMahon and J. T. Bonner, On Size And Life. New York, NY: Scientific American Books, 1983.
[32] A. Singh, D. A. Horsley, M. B. Cohn, A. P. Pisano, and R. T. Howe, “Batch transfer of microstructures using flip-chip solder bump bonding,” The 9th International Conference on Solid-State Sensors and Actuators (Transducers''97), Chicago, IL, June, 1997, pp. 265-268.
[33] R. R. A. Syms, and E. M. Yeatman, “Self-assembly of three-dimensional microstructures using rotation by surface tension forces,” Electronics Letters, 29, pp. 662-664, 1993.
[34] P. W. Green, R. R. A. Syms, and E. M. Yeatman, “Demonstration of three-dimensional microstructure self-assembly,” Journal of Microelectromechanical Systems, 4, no. 4, pp. 170-176, 1995.
[35] K. F. Harsh, “Solder for MEMS self-assembly,” Master thesis, University of Colorado, 1998.
[36] F. P. Beer and E. R. Johnston, Mechanics of Materials. 2nd Ed., New York, NY: McGraw-Hill, 1992.
[37] H. Guckel, D. W. Burns, H. A. C. Tilmans, D. W. DeRoo, and C. R. Rutigliano, “Mechanical properties of fine grained polysilicon-the repeatability issue,” Technical Digest, IEEE International Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June, 1988, pp. 96-99.
[38] M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proceeding of IEEE, 85, no. 11, pp.1833-1856, 1997.
[39] H. Y. Lin, and W. Fang, “Rib-reinforced micromachined beamand its applications,” Journal of Micromechanics and Microengineering, 10, pp. 93-99, 2000.
[40] A. Friedberger, and R. S. Muller, “Improved surface-micromachined hinges for fold-out structures,” Journal of Microelectromechanical Systems, 7, no. 3, pp. 315-319, 1998.
[41] V. A. Aksyuk, B. Barber, P. Gammel and D. J. Bishop, “Construction of a fully functional NSOM using MUMPs Technology,” Proceedings of SPIE, Austin, Texas, September, 1997, pp.188-194.
[42] V. A. Aksyuk, F. Pardo, and D. J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” Proceedings of SPIE, Paris, France, March, 1999, pp.984-993.
[43] W. Fang and J. A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp. 276-281, 1995.
[44] Telcordia Technologies, Generic Reguirements for passive Optical Components, Environment and Mechanical Performance Criteria, http://www.telcordia.com/
[45] F. P. Beer and E. R. Johnston, Vector Mechanics for Engineering Statics. 2nd Ed., New York, NY: McGraw-Hill, 1990.
[46] W. P. Lai, and W. Fang, “Novel Bulk Acoustic Wave Hammer to Determinate the Dynamic Response of Microstructures Using Pulsed Broad Bandwidth Ultrasonic Transducers,” Sensors and Actuators A, 96, pp. 43-52, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊