跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾宜君
研究生(外文):I-Chun Chung
論文名稱:BGA型態多晶片模組構裝之散熱效能分析
論文名稱(外文):On the Thermal Performance of BGA type Multichips Module Package
指導教授:陳文華陳文華引用關係鄭仙志
指導教授(外文):Wen-Hwa ChenHsien-Chie Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:多晶片模組構裝散熱效能分析
外文關鍵詞:Multichips Module PackageThermal Performance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
在多晶片模組構裝(multichips module package, MCM)之初始設計階段,散熱效能之計算分析頗為重要。欲探討各種設計參數如晶片尺寸及位置等對於散熱效能之影響,不論是數值模擬或實驗方法皆需不斷的探討,既耗時亦不具經濟效益。本論文旨在針對平面內含多塊不同尺寸、位置晶片之BGA型態MCM構裝進行散熱分析,進而建立一可以直接且準確描述晶片接面溫度的方程式,以作為平面MCM構裝設計之參考。
本論文首先利用ANSYS有限單元套裝軟體成功的建立了一個精確的三維有限單元熱傳分析模型,經由晶片溫度量測實驗之驗證,可以有效的探討BGA(Ball Grid Array)型態MCM構裝之散熱效能。由於此三維有限單元熱傳分析模型之自然對流邊界條件,係依JEDEC規範,由紅外線熱像儀量測構裝表面溫度場而來,故構裝表面的熱對流和熱輻射效應均已考慮在內。並以不準確度分析,探討晶片接面溫度量測之最大不準確度。為了建立MCM構裝在不同晶片尺寸及位置變化下之晶片接面溫度回應表面,本論文成功的利用所建立之三維有限單元模型,配合Chen 等(2001)所採用的自然對流及輻射修正熱傳邊界深入進行參數化及迴歸分析。並藉由顯著性及複判定係數檢測,證實所建立的多晶片回應表面可有效且準確預測在不同晶片尺寸及位置情況下之平面MCM構裝散熱效能。本論文之成果亦可進一步延伸至多晶片堆疊式MCM構裝之散熱與結構最佳化設計,對於MCM構裝散熱效能設計有相當應用參考價值。
Abstract
Thermal characterization of a multichips module (MCM) during the initial design stage is computationally intensive. The influence of each design parameter, such as chip size or position, on the thermal performance needs to be performed and solved whether by numerical simulations or experiments. It is time consuming and not economical. Therefore, this work aims at analyzing the thermal characterization of a BGA type MCM package having multichips with different sizes and positions. An approximated but accurate mathematical equation, which can be used to directly characterize chip junction temperature of the planar MCM, is also proposed.
In order to attain the objectives, a rigorous three-dimensional (3D) finite element (FE) model for thermal analysis is established using ANSYS program. The accuracy of the FE model in terms of chip junction temperature is substantially validated against a thermal test die measurement. Since the required boundary condition for thermal analyzing MCM package under a natural convection environment is determined by an Infrared (IR) thermometer, based on the JEDEC standard, the heat convection and radiation effects on package surface are fully considered. Also, the uncertainty analysis is used to analyze the maximum uncertainty of the thermal test die measurement. Furthermore, to establish the response surfaces of chip junction temperature with various chip size and positions, this work successfully steps forward into the parametric study and regression analysis by adopting the 3D FE model constructed and the natural convection and radiation heat transfer correlation model used by Chen et al. (2001). After careful examination by the analysis of variance and coefficient of multiple determinations, it is concluded that the response surfaces can effectively and accurately predict the thermal characterization of a planar MCM with different chip sizes and positions. This study can be further extended to analyze the thermal performance and optimization of stacked MCM and should be very helpful in thermal design of MCM package.
目錄:
目錄……………………………………………………………………………I
圖表目錄………………………………………………………………………III
一、 導論………………………………………………………………1
二、 問題敘述…………………………………………………………7
2. 1 BGA型態MCM構裝幾何結構…………………………………………7
2. 2 測試基板……………………………………………………………8
2. 3 材料性質……………………………………………………………8
三、 有限單元熱傳分析………………………………………………10
3. 1 MCM有限單元熱傳分析模型………………………………………10
3. 2 熱傳邊界條件……………………………………………………11
四、 實驗量測與驗證…………………………………………………13
4. 1 二極體溫度順向偏壓曲線量測……………………………………13
4. 2 自然對流環境下晶片溫度量測……………………………………14
4. 3紅外線熱像儀溫度場量測…………………………………………14
五、 不準確度分析…………………………………………………………16
5. 1 電源供應器之不準確度分析………………………………………16
5. 2量測測試晶片晶片接面溫度之不準確度分析……………………17
六、 回應表面法…………………………………………………………20
6. 1線性迴歸模型…………………………………………………22
6. 2二次迴歸模型………………………………………………………23
6. 3 迴歸因子範圍………………………………………………………25
6. 4顯著性檢定…………………………………………………………26
七、 結果與討論…………………………………………………………28
7. 1 三維有限單元熱傳分析模型之確立………………………………28
7. 2線性疊加晶片溫度梯度之結果……………………………………31
7. 3晶片接面溫度之回應表面…………………………………………32
八、 結論及未來展望………………………………………………36
九、 參考文獻……………………………………………………………38
十、 附表與附圖…………………………………………………………41
Alvarez, A. R., Abdi, B.L., Young, D.L., Weed, H.D., and Herald, E.R., 1988, “Application of statistical and response surface methods to computer aided VLSI device design,” IEEE transactions on CAD, 7(2), pp. 272-288.
Aveam, B.C., 1989, “θjc Characterization of Chip Packages- Justification, Limitation, and Future,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 724-731.
Aghazadeh, M. and Mallik, D., 1990, “Thermal Characteristics of Single and Multilayer High Performance PQFP Packages,” IEEE Transactions on Components, Hybrid, and Manufacturing Technology, Vol. 13, No.4, pp. 975-979, December.
Chen, W.H., Cheng, H.C., and Shen, H.A., 2001, “On Effective Thermal Characterization of Electronic Packaging,” Proceedings of IPACK’01, pp. 1-12.
Cote, K., Langari, A., and Hashemi, H., 1998, “Thermal Characterization of Multi-Die BGA Packages,” 1998 Electronic Components and Technology Conference, pp. 70-75.
Ellision, G. N., 1989, “Thermal Computations for Electronic Equipment,” R. E. Krieger Publishing Company, Malabar, FL.
Edwards, D.R., Hwang, M., and Stearsn, B., 1995, “Thermal Enhancement of Plastic IC Packages”, IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part A, Vol. 18, No. 1, March, pp. 57-67.
Feng, A., 2002, ‘‘The Thermal Management of a Seven Dies Multichip Modules,’’ 2002 IMAPS Taiwan Technical Symposium, May 2.
Holman, P., 1994, “Experimental Method for Engineers,” McGraw-Hill, Inc., 6th Editioon.
Kline, S.J., and McClintock, F.A., 1953, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., p.3.
Kromann, G. B., 1992, “Thermal Management for Ceramic Multichip Modules: Experimental Program,” Multi-chip Module Conference, Proceedings 1992 IEEE, pp. 75-78.
Koval, V. A., and Fedasyuk, D. V., 1996, “The MCM’s Thermal Testing,” VLSI Test Symposium, Proceedings of 14th, pp. 266-271.
Lombardi, C., 1991, “Use of the response surface method in IC manufacturing,” Microelectronic Engineering, 10, 287-298.
Liang, L., and Hamzehdoost, A., 1992, “Guidelines for Thermal Management of Multichip Modules,” Electronic Components and Technology Conference of 42nd, pp. 787-791.
Lall, B. S., Guenin, B. M., and Molnar, R. J., 1995, “Methodology for Thermal Evaluation of Multichip Modules,” Eleventh IEEE SEMI-THERMTM Symposium, pp. 72-79.
Lee, T.C., 1999, Applications of Response Surface Methodology in Optimum Design, Master Dissertation Thesis, National Chung-Hsin University.
Mertol A., 1993, “Optimization of Extruded Type External Heat Sink for Multichip Module,” Journal of Electronic Packaging, Vol. 115, pp. 440-444.
Mulgaonker, S., Chambers, B., Mahalingam, M., Ganesan, G., Hause, V. and Berg, H., 1994, “Thermal Performance Limits of the QFP Family,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 17, No. 4, pp. 573-581.
Ozmat, B., 1992, “Interconnect Technologies and the Thermal Performance of MCM,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, pp. 860-869.
Ridsdale, G., Joiner, B., Bigler, J. and Torres, V. M., 1996, “Thermal Simulation to Analyze Design Features of Plastic Quad Flat Package,” Journal of Microcircuts and Electronic Package, Vol. 19, pp. 103-109.
Schoofs, A.J.G., van Houten, M.H., Etman L.F.P. and van Campen, D.H., 1997, “Global and Mid-Range Funciton Approximation for Engineering Optimization,” Numerical Methods of Operations Research, 46:pp. 335-359.
Sullhan, R., Fredholm, M., Monaghan, T., and Agarwal, A., 1991, “Thermal Modeling and Analysis of Pin Grid Arrays and Multichip Modules,” Seventh IEEE SEMI-THERMTM Symposium, pp. 110-116.
Sweet, J. N., Peterson, D. W., Chu, D., Bainbridge, B. L., Gassman, R. A., and Reber, C. A., 1993, “Analysis and Measurement of Thermal Resistance in a 3-dimensional Silicon Multichip Module Populated with Assembly Test Chips,” Ninth IEEE SEMI-THERMTM Symposium, pp. 1-7.
Zahn, B. A., 2000, “Steady State Thermal Characterization and Junction Temperature Estimation of Multichip Module Package Using the Response Surface Method,” IEEE Transaction on Components and Packaging Technology, Vol. 23, No. 1, pp. 33-39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top