跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王閔生
研究生(外文):Men-Sheng Wang
論文名稱:封裝材料在不同溫度之下的靜態和潛變行為
論文名稱(外文):Static and Creep Behavior of Package Material under Different Temperature
指導教授:葉銘泉葉銘泉引用關係
指導教授(外文):Ming-Chuen Yip
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:69
中文關鍵詞:聚亞醯胺樹脂頸縮夾持板潛變破壞
外文關鍵詞:polyimideneckingend tapcreeprupture
相關次數:
  • 被引用被引用:2
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於探討電子構裝形式PBGA中的BT基板材料以及polyimide材料在不同應變率拉伸試驗之機械性質,以及兩種材料在不同溫度之下進行拉伸試驗的機械性質,最後針對較易觀察出潛變現象的polyimide材料做潛變試驗。
在拉伸試驗的過程中,分別以10-2、10-3、10-4(mm/mm/s)三種應變率對BT材料以及polyimide材料進行拉伸試驗,發現拉伸速率越快,兩種材料的強度都會越強,剛性(E)也越高,BT材料的拉伸破壞的應變也會加大,但polyimide材料則是應變速率越慢,其拉伸破壞應變越大,因為有頸縮(necking)的現象發生所導致。
另外考慮兩種材料在不同溫度之下的機械性質,BT材料的應變率為10-3而polyimide材料則是使用10-2,因為polyimide材料的延展性較好的緣故,總共使用五種不同的溫度,分別為-40°C,25°C,75 °C ,125°C及150°C。
最後討論較易觀察出潛變行為的polyimide材料,觀察此材料的潛變行為,因為低溫的潛變現象非常不明顯,所以不予討論,使用25°C,75 °C ,125°C及150°C這四種溫度來做潛變的試驗,做了多組不同的實驗,希望能找出潛變的數學模型。

The research based on BT material and polyimide material under defferent strain rate test.And use two materials to enforce tensile test in different temperature.Final,use polyimide material enforce creep test.
Use 10e-2、10e-3 and 10e-4 strain rate to enforce tensile test,when strain rate faster,the strength is stronger.But polyimide material,when strain rate slower,tensile rupture is higher,because the necking behavior happen.
Consider two material,it's mechanical properties under different temperature.Use five temperature,each temperatue is -40°C,25°C,75 °C ,125°C及150°C。
Final,consider polyimide material,observe creep behavior under this material,because creep not obvious uder lower temperature,we don't consider it.Use 25°C,75 °C ,125°C及150°C to enforce creep test,use different experiment,hope can find creep mathmatical model.

摘要
表目錄…………………………………………………………………..IV
圖目錄…………………………………………………………………...V
壹、前言………………………………………………………………..1
貳、研究目的與內容…………………………………………………..3
2.1 研究目的………………………………………………………….3
2.2 研究內容…………………………………………………………3
2.2.1 常溫試片機械性質探討
2.2.2 不同溫度下之機械性質
2.2.3 PI材料在不同溫度之下的潛變行為探討
參、文獻回顧…………………………………………………………..5
肆、材料機械性質……………………………………………………..7
4.1高分子複合材料受拉伸試驗之材料反應…………………………8
4.2材料的潛變行為……………………………………………………9
4.2.1實驗曲線的嵌合
4.2.2潛變性質與時間之關係曲線模式
4.2.3潛變的數學模型
伍、實驗內容及程序…………………………………………………12
5.1 儀器簡介………………………………………………………….12
5.1.1 Instron-8848型微測試試系統(micro tester system)
5.1.2 微氣動式夾頭 (micro pneumatic grips)
5.1.3 溫度控制箱(temperature chamber)
5.1.4 可變換夾面夾頭(versa grips)
5.1.5 高倍率電子顯微鏡量測設備
5.2 試片準備…………………………………………………………14
5.2.1 PBGA基板以及polyimide軟線板簡介
5.2.2 試片的尺寸與裁切
5.3 實驗方法及程序…………………………………………………15
5.3.1不同應變率下之拉伸試驗
5.3.2不同溫度下的試驗
5.3.3拉伸潛變測試
5.4 實驗流程………………………………………………………….17
陸、結果與討論………………………………………………………18
6.1 BT常溫試片承受拉伸試驗之研究………………………………18
6.1.1 BT常溫試片不同應變率之拉伸試驗
6.1.2 BT常溫試片不同應變率拉伸試驗之比較
6.1.3高倍率顯微鏡觀察破壞斷面
6.2 PI常溫試片承受拉伸試驗之研究………………………………..19
6.2.1 PI常溫試片不同應變率之拉伸試驗
6.2.2 PI常溫試片不同應變率拉伸試驗之比較
6.2.3 高倍率顯微鏡觀察破壞斷面
6.3 BT積層板在不同溫度下之拉伸試驗研究……………………..20
6.3.1 BT積層板在不同溫度之下拉伸試驗之比較
6.3.2 高倍率顯微鏡觀察破壞斷面
6.3.3 不同溫度的BT積層板SEM圖片
6.4 PI材料在不同溫度下之拉伸試驗研究………………………21
6.4.1 PI材料在不同溫度之下拉伸試驗之比較
6.4.2高倍率顯微鏡觀察破壞斷面
6.5 PI材料在不同溫度之下的潛變試驗………………………..22
6.5.1 不同溫度下潛變試驗的比較
6.5.2 潛變數學模型的建立
柒、結論…………………………………………………………25
參考文獻…………………………………………………………27

1.Lu , M., Ren, W., Liu, S.and Shangguan, D., “A Unified Multi-Axial Sub-Micro Fatigue Tester with Applications to Electronic Packaging Materials,” Electronic Components and Technology Conference, San Jose, CA USA, May 18-21, pp. 144-148, 1997.
2. Sharpe, Jr., W. N., Yuan, B., Vaidyanathan, R. and Edwards, R. L., “Measurements of Young's Modulus, Poisson's Ratio, and Tensile Strength of Polysilicon,” Micro Electro Mechanical Systems, January 26-30, pp. 424-429, 1997.
3. Suwito, W., Dunn, M. L. and Cunningham, S. J., “Mechanical Behavior of Structures for Microelectromechanical Systems,” International Conference on Solid-State Sensors and Actuators, Chicago, Illinois USA, June 16-19, pp. 611-614, 1997.
4. Ren, W., Qian, Z. and Liu, S., “Scale Effect on Packaging Materials,” Electronic Components and Technology Conference, San Diego, CA USA, June 1-4, pp. 1229-1234,1999.
5. Suwito, W., Dunn, M. L. and Cunningham, S. J.“MechanicalBehaviorof Structures for Microelectromechanical Systems,” International Conference on Solid-State Sensors and Actuators, Chicago, Illinois, USA, June 16-19, pp. 611-614, 1997.
6.Darveaux, R., Norton, L. and Carney, F., “Temperature DependentMechanical Behavior of Plastic Packaging Materials,” Electronic Components and Technology Conference, Las Vegas, Nevada, USA, May 21-24, pp. 1054-1058, 1995.
7. John H. L., Pang and Tze-Ing Tan., “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subject to Temperature Cycling Loading,” Electronic Components and Technology Conference, pp.878-883, 1998.
8.Hong Yang, Phillip Deane, Paul Magill and k. Linga Murty , “Creep Deformation of 96.5Sn-3,5Ag Solder Joints In A Flip Package,” Electronic Components and Technology Conference, pp.1136-1142, 1996.
9. A. Schubert, H. Walter, R. Dudek, B. Michel, “Thermo-Mechanical Properties and Creep Deformation of Lead-Containing and Lead-free Solders,” 2001 International symposium on Advanced Packaging Materials, pp. 129-134.
10. John H. Lau, ”Creep of Solder Interconnects Under Combined Loa -ds,” IEEE, 1993, pp. 852-857.
11. Shi, X. Q., Zhou, W., Pang, FH. L. J. and Wang, Z. P., “Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy,” ASME Journal of Electronic Packaging, Vol. 121, pp. 179-185, 1999.
12. Ren, W., Wang, J., Qian, Z., Zou, D. and Liu, S., “Investigation of Nonlinear Behaviors of Packaging Materials and Its Application to a Flip-Chip Package,” International Symposium on Advanced Packaging Materials, Chateau Elan, Braselton, Georgia USA, March 14-17, pp. 31-40, 1999.
13. Qian, Z, Lu, M. and Liu, S., “Constitutive Modeling of Polymer Films From Viscoelasticity to Viscoplasticity,” ASME Journal of Electronic Packaging, vol. 120, pp. 145-149, 1998.
14. Qian, Z, Lu, M. and Liu, S., “Visco-Elastic-Plastic Behaviors of Polymer-Based Packaging Materials,” International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, Binghamton, NY, USA, September 28-30, pp. 62-67, 1998.
15. 吳嘉福, 馬振基.,” 碳纖維強化高分子複合材料積層板疲勞及潛變性質之探討,” 碩士論文--國立清華大學化學工程研究所.,1994。
16. 胡德,“ 高分子物理與機械性質,”渤海堂文化公司。
17. Wu, S. X., Peng, S., and Yeh, C. P., “Behavior of Polymeric Materials and Their Effects on High Density PWB,” IEEE Transactions on Components and Packaging Technology, Vol. 23 No. 3, pp. 433-438, 2000.
18. Pecht, M. and Wu, X., “Characterization of Polyimides Used in High Density Interconnects,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 17, No. 4, pp.632-639, 1994.
19. Harper, B. D., Rao, J. M., Kenner, V. H. and Popelar, C. H., “Effects of Temperature and Moisture upon Stress Relaxation in Polyimide Film,” Mechanics and Materials for Electronic Packaging: Vol. 2-Thermal and Mechanical Behavior and Modeling, pp. 17-27, 1994.
20. Tzan, S. R. and Chen, L. S., “Study of Epoxy Material Properties for Solving Thermal Mismatch Problem on Electronic Packaging,” InterPACK’99, Hawaii, June 13-18, EEP-Vol. 26-1, pp. 373-378, 1999.
21. Shrotriya, P.; Sottos, N. R. .,”Creep and Relaxation Behavior of Woven Glass/Epoxy Substrates for Multilayer Circuit Board Applications,” POLYMER COMPOSITES.
22. M. S. Kiasat, G. Q. Zhang, L. J. Ernst and G. Wisse, “Creep behavior of a Molding Compound and Its Effect on Packaging Process Stresses,” 2001Electronic Components and Technology Conference.
23. Lai J. and Bakker A. “Analysis of the non-linear creep of high-density polyethylene,” Polymer, Vol. 36, No. 1 pp. 93-99, 1995.
24. Li J. “Faliure-Mechanism Models for Creep and Creep and Creep Rupture,” IEEE Transactions on Reliability, Vol. 42, No. 3, pp. 339-353, 1993.
25. Sotto N. R., Ockers J.M., “ Thermoelastic Properties of Plain Weave Composites for Multilayer Circuit Board Applications,” Journal of Electronic Packaging, 1999.
26. Wu, T. Y., Guo, Y., Chen, W. T., “ Thermal-Mechanical Strain Characterixation for Printed Wiring Board, ”IBM J. Res. Develop, Vol 37 No5, pp.621-634 , 1993.
27. Ramesh Tlreja.,“ Fatigue of Composite Material.,” Ch8, Technometric Publishing Company, Inc., 1987.
28. Anthony J. Rafanelli, “ Thermo-Mechanical Creep Characteristics of Electrically Conductive Epoxy Adhesives at Room Temperature ,” InterSociety Conference on Thermal Phenomena, pp.299-305. 1996.
29. 陳慶宗, “半導體封裝可靠度需求,”工業材料139期, pp. 160-168 ,86 年7月。
30. 馮克林, “可靠度加速測試概觀,” 工業材料 151期, pp. 169-176 , 88年。
31. 余俊輝,戴江漢,陳培煌, “ 電子構裝分析與量測,” 工業材料158期, pp. 84-89 , 89年2月。
32. 許再發,黃仁豪,劉文龍,”BMI系PBGA基板技術簡介,”工業材料151期, 88年7月。
33. R. R. Tummala and E. J Rymaszewski, “ Microelectronics Pavkaging Handbook,” Van Nostrand Reinhold , 1989.
34. M. L. Minges, “Packaging Electronic Materials Handbooks,” Vol1.1 ,ASM International, Materials Park, OH, 1989.
35. ASTM D638M-81, “Standard Test Method for Tensile Properties of Plastics(Metric),” Annual Book of ASTM Standards, Vol. 08. 01, pp. 248-259, 1984.
36. ASTM D1708-79, “Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens,” Annual Book of ASTM Standards, Vol. 08. 02, pp. 82-86, 1984.
37. ASTM D3039-76, “Standard Test Method for Tensile Properties of Fiber-resin Composites,” Annual Book of ASTM Standards, Vol. 15. 03, pp. 162-167, 1984.
38. ASTM D3552-77, “Standard Test Method for Tensile Properties of Fiber reinforced Metal Matrix Composites,” Annual Book of ASTM Standards, Vol. 15. 03, pp. 225-231, 1984.
39. ASTM D2990-77, “Tensile,Compressive,and Flexural Creep and Creep-Rupture of Plastics,” Annual Book of ASTM Standards, Vol. 08. 02, pp. 714-724, 1984.
40. Pecht, M. G., Agarwal, r., McCluskey, P., Dishongh, T., Javadpour, S. and Mahajan, R., “electronic packaging materials and their properties,” CRC Press, boca Raton, FL, 1999.
41. Jürgen Wilde, Klaus Becker, etc , “Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder”, IEEE Transactions on Advanced packaging, Vol. 23, No. 3, pp. 408-414, AUGUST 2000.
42. R. W. Neu, D. T. Scott, M. W. Woodmansee, “Thermomechanical Behavior of 96Sn -4Ag and Castin Alloy,”Journal of electronic packaging, Vol. 123 SEPTEMBER 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top