跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/17 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鴻鈞
論文名稱:疊層方式、熱循環及負載順序對CFRP複合材料之軸向疲勞性質影響
論文名稱(外文):The Influence of Thermal-Cycle and Load Sequence on Fatigue Life of Various Lay-up Carbon/Epoxy Laminates
指導教授:葉銘泉葉銘泉引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:複合材料熱循環疊層順序負載順序
相關次數:
  • 被引用被引用:1
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文針對四種疊層方式的積層板,[0/45/90/-45]2s、[0/60/-60]2s、[90/-30/30]2s及[0/90]2s,分別對原始試片及受熱循環後之試片進行軸性拉伸疲勞實驗以了解熱循環對材料疲勞破壞之影響;同時並針對[0/45/90/-45]2s疊層方式進行負載順序效應及熱循環的交互影響研究。
實驗結果指出,不同的疊層方式表現出不同的疲勞性質以及破壞模式。一般來說,熱循環主要造成基材的劣化,疲勞壽命在低應力等級會有下降情形,但實驗結果顯示在試片極易發生脫層時,熱循環的效果並不明顯。同時,Miner’s rule將被運用於比較實驗結果,然而負載順序效應在高、低應力明顯的不同。經高應力預疲勞,其殘餘強度些許下降。疲勞性質方面,高應力等級疲勞壽命明顯降低,但低應力等級疲勞壽命幾乎與原始試片相同。而經低應力預疲勞,殘餘強度下降幅度大於高應力等級預疲勞,疲勞性質由於已完全脫層,故無論在高、低應力均明顯下降,且由於損傷累積接近線性增加,實驗結果十分接近Miner’s rule所預測結果。

第一章 前言
第二章 文獻回顧
2-1 高分子複合材料的疲勞特性
2-1.1 高分子複合材料的破壞型態
2-1.2 應力(S)與破壞週次( Nf )的關係
2-1.3 殘餘強度、勁度與模數( Modulus )的變化
2-2 高分子複合材料承受熱循環負載之特性
2-3 負載順序效應對高分子複合材料的影響
2-4 疊層順序對高分子複合材料的影響
第三章 實驗內容與程序
3-1 儀器簡介
3-1.1 Instron-1322型軸向-扭向液壓伺服動態試驗系統
3-1.2 實驗控制系統及資料記錄軟體
3-1.3 熱壓機
3-1.4 熱循環機
3-1.5 C-Scan超音波系統
3-2 試片製作及檢測
3-3 實驗程序
3-3.1 原始試片靜態軸向拉伸強度及疲勞試驗
3-3.2 熱循環破壞
3-3.2.1 殘餘強度試驗
3-3.2.2 軸向拉伸疲勞試驗
3-3.3 預疲勞週次破壞
3-3.4 預疲勞週次破壞與熱循環雙重破壞
3-3.5 疊層順序影響
第四章 結果與討論
4-1 原始試片
4-1.1 軸向擬靜態拉伸實驗
4-1.2 拉伸-拉伸疲勞試驗
4-2 經熱循環之試片
4-2.1 殘留強度
4-2.2 拉伸-拉伸疲勞試驗
4-3 負載順序效應
4-3.1 經高應力等級預疲勞
4-3.2 經低應力等級預疲勞
4-4 負載順序與熱循環破壞加成效應
4-4.1 經高應力等級預疲勞再經熱循環破壞
4-4.2 經低應力等級預疲勞再經熱循環破壞
4-5 熱循環效應的影響
4-6 疊層順序效應
4-6.1 靜態強度與疲勞性質
4-6.2 破壞模式
第五章 結論與建議
第六章 參考文獻

1. ASM Staff Report. Sea duty for composition. Adv Mater Processes 992;142:16-20.
2. D. A. Spera, “What is thermal fatigue?”, Thermal Fatigue of Materials and Composites, ASTM STP 612, D. A. Spera and D. F. Mowbray, Eds., American Society for Testing and Materials, pp. 3-9, 1976.
3. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, 1980.
4. D . S . Saunders and G . Clark , “Fatigue Damage in Composite Laminates," Materials Forum, Vol.17, 1993, pp. 309-331.
5. Jamison R. D., Schulte K., Reifsnider K. L. and Stinchcomb W. W., “Characterization and Analysis of Damage Mechanisms in Tension- Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, 1984, pp. 21-55.
6. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advances, Z. Hashin and C. T. Herakovich eds., Pergamon Press, New York, 1983, pp. 399-420.
7. T. K. O'Brien, “Characterization of Delamination Onset and Growth in a Composite Laminates,” Damage in Composite Materials, ASTM STP 775, American Sociaty of Testing and Materials, 1982, pp. 140- 167.
8. G. M. Newaz and A. Lustiger, “Interlaminar Fracture an Craze Growth in PEEK Composite under Cyclic Loading,” Composite Materials, Vol.24, 1990, pp. 175-187.
9. G. M. Newaz, A. Lustiger and J. Y. Yung, “Delamination Onset and Growth Under Cyclic Loading at Elevated Temperature in Thermoplastic Composites,” Advances in Thermoplastic Matrix Composite Materials, ASTM STP 1044, American Sociaty for Testing and Materials, 1989, pp. 264-278.
10. M. H. R. Jen, Y. S. Kan and J.M. Hsu, “Initiation and Propagation of Delamination in a Centrally Notched Composite Laminate,” Composite Materials, Vol. 27, No.3, 1993, pp. 272-302.
11. W. Hwnag and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Composite Materials, Vol. 20, 1986, pp. 154-165.
12. N. H. Tai, C. C. M. Ma and S. H. Wu, “Fatigue Behavior of Carbon Fibre/PEEK Laminate Composites,” Composites, Vol. 26, 1995, pp. 551-559.
13. 林嘉昱,鄭合志及吳文方, “複合材料之疲勞壽命分佈與拉伸強度關係,” 中國機械工程學會第十四屆全國學術研討會論文集, 中壢, 1997, pp. 471-478.
14. Poursartip, A., Ashby, M. F., and Beaumont, P. W. R., “The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: I- Development of the Model,” Composites Science and Technology, Vol. 25, 1986, pp. 193-218.
15. Bangyan Liu and Larry B. Lessard, “Fatigue and Damage-Tolerance Analysis of Composite Laminates: Stiffness Loss, Damage Modelling, and Life Prediction,” Composites Science and Technology, Vol. 51, 1994, pp. 43-51.
16. H. Hahn and R. Y. Kim, “Proof Testing of Composite Materials,” Composite Materials, Vol. 9, 1975, pp. 297-311.
17. A. Rotem, “Stiffness Change of a Graphite Epoxy Laminate Under Reverse Fatigue Loading,” Composites Technology & Research, Vol. 11, No. 2, 1989, pp. 59-64.
18. R. D. Jamison, K. Schulte, Reifsnider K. L. and W. W. Stinchcomb, “Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, 1984, pp. 21-55.
19. A. Rotem, “Fatigue and Residual Strength of Composite Laminates,” Engineering Fracture Mechanics, Vol. 25, Nos. 5/6, 1986, pp. 819-827.
20. K. L. Reifsnider and W. W. Stinchcomb, “A Critical-Elemental Model of The Residual Strength and Life of Fatigue-Loaded Composite Coupons,” Composite Materials: Fatigue and Fracture (ASTM STP 907), ed. H. T. Hahn. American Society for Testing and Materials, Philadelphia, PA, USA, 1986, pp. 298-313.
21. C. T. Herakovich, and M. W. Hyer, “Damage-Induced Property Changes in Composites Subjected to Cycled Thermal Loading,” Engineering Fracture Mechanics, 25, 1986, pp. 779-791.
22. N. H. Tai, M. C. Yip, C. M. Tseng, “Influence of Thermal Cycling and Low-Energy Impact on the Fatigue Behavior of Carbon/PEEK Laminates,” Composites: Part B, 30, 1999, pp. 849-865.
23. 高鉦翔, “衝擊及熱循環負載對擬均向性Gr/PEEK複合材料之拉伸-壓縮疲勞行為之影響,” 國立清華大學動力機械工程學系碩士論文, 1998.
24. 林基正, “具中心圓孔之碳纖維強化聚醚醚酮(Gr/PEEK)積層板經熱循環負載後之拉伸-壓縮疲勞性質探討,” 國立清華大學動力機械工程學系碩士論文, 1999.
25. E. M. Silverman, and R. J. Jones, “Property and Processing Performance of Graphite/PEEK Prepreg Tapes and Fabrics,” SAMPE journal, July/August, 1988.
26. K. B. Shin, C. G. Kim, C. S. Hong, and H. H. Lee, “Prediction of Failure Thermal Cycles in Graphite/Epoxy Composite Materials under Simulated Low Earth Orbit Environments,” Composites: part B, 31, 2000, pp. 223-235.
27. S. Kobayashi, K. Terada, S. Ogihara, N. Takeda, “Damage-Mechanics Analysis of Matrix Cracking in Cross-Ply CFRP Laminates under Thermal Fatigue,” Composites Science and Technology, 61, 2001, pp. 1735-1742.
28. J. A. Bannantine, J. J. Comer, J. L. Handrock, “Fundaments of Metal Fatigue Analysis,” Prentice Hall, New Jersey, 1990.
29. Y. Q. Ding, Y. Yan and R. Mcllhagger, “Effect of Impact and Fatigue Loads on the Strength of Plain Weave Carbon- Epoxy Composites,” Materials Processing Technology, Vol. 55, 1995, pp. 58-62.
30. V. S. Avva, J. R. Vala and M. Jeyaseelan, “Effect of Impact and Fatigue Load on The Strength of Graphite/Epoxy Composite,” Composite Materials: Testing and Design, ASTM STP 893, Whitney, T. M., Ed., American Society for Testing and Materials, 1986, pp. 196-206.
31. W. Cantwell, P. T. Curtis and J. Morton, “Impact and Subsequent Fatigue Damage Growth in Carbon Fibre Laminates,” International Journal of Fatigue, Vol. 6, No. 2, 1984, pp. 113- 118.
32. 葉銘泉, 胡文正, “平均應力及負荷順序對熱固性複材低週次疲勞之實驗與分析,” 中國機械工程學會第八屆學術研討會, 台北, 1991, pp. 1815-1821.
33. 陳保松, “熱壓修補對Gr/PEEK積層板經預疲勞週次及衝擊後 之拉伸疲勞壽命之影響,” 國立清華大學動力機械工程學系碩士論文, 2001.
34. I. P. Bond, I. R. Farrow, “Fatigue Life Prediction under Complex Loading for XAS/914 CFRP incorporating a Mechanical Fastener,” International Journal of Fatigue, 22, 2000, pp. 633-644.
35. S. R. Swanson, “Introduction to Design and Analysis with Advanced Composite Material,” Prentice Hall, New Jersey, 1997, pp. 133-136.
36. S. Ogihara, N. Takeda, S. Kobayashi, A. Kobayashi, “Effect of Stacking Sequence on Microscopic Fatigue Damage Development in Quasi-Isotropic CFRP laminates with interlaminar-toughened layers,” Composites Science and Technology, 59, 1999, pp. 1387-1398.
37. K. Morioka, Y. Tomita, “Effect of Lay-Up Sequence on Mechanical Properties and Fracture Behavior of CFRP Laminate Composites,” Material Characterization, 45, 2000, pp. 125-136.
38. H. J. Park, “Effects of Stacking Sequence and Clamping Force on Bearing Strength of Mechanically Fastened Joints in Composite laminates,” Composite Structures, 53, 2001, pp. 213-221.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top