跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高福聲
論文名稱:超導共振腔之結構變形對內建電磁場特性之影響
論文名稱(外文):Effects of Structure Deformation on the Electromagnetic Characteristics of a Cryogenic Cavity
指導教授:葉孟考葉孟考引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:51
中文關鍵詞:超導共振腔電磁場特性結構變形
外文關鍵詞:electromagnetic characteristicscryogenic cavity
相關次數:
  • 被引用被引用:6
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為因應科技的不斷進步與研究領域的快速拓展,國內同步輻射研究中心所提供給研究單位的同步輻射光源也需要提高品質,本文針對超導共振腔受到不同溫度、壓力及位移負載時,以ANSYS軟體分析其機械結構的變形以及內部電磁場共振頻率的改變,此分析的結果有助於往後共振腔之設計與操作,及光源品質的改善。分析結果顯示,共振腔內部電磁場的共振頻率與腔體的變形有關,共振腔體於低溫一大氣壓時改變左端位移,電磁場共振頻率隨腔體拉長而上升;共振腔體由室溫下降到4K,不同楊氏係數並不影響共振頻率;共振腔左端幾何形狀對應力分佈有影響;低溫時電磁場共振頻率隨溫度增加而下降,共振腔體外之壓力增加亦使共振頻率下降。
摘要…………………………………………………...…………………….i
誌謝……………………………………………...…………………………ii
目錄…………………………………………....…………………………iii
圖表目錄...……………………………..…………………………………iv
第一章 簡介………………………...……………………………….…….1
1.1研究動機……………......…………………………………………1
1.2文獻回顧……......…………………………………………………1
1.3研究目標……………………………………………………....…..4
第二章 有限單元模擬與分析………………………………………….....5
2.1模型建立與單元選取..………..……………………...……….…5
2.2有限單元分析……………..………………………..……..….….7
第三章 結果與討論…….………………….…........…………………13
3.1不同楊氏係數對共振腔頻率之影響…………….....…………..13
3.2常溫之位移控制分析…...…….……….…..………….……….14
3.3常溫降至4.222K之分析………………….....…………………15
3.4低溫及一大氣壓之分析……..……......……………………...15
3.5低溫及一大氣壓之位移控制分析…….......……………………16
3.6低溫時不同溫度之分析………………………….………......…17
第四章 結論…………………………….….…………………........…19
參考文獻……………….…………………………………………....…..20
附錄A…………………………………………………………………......23
附錄B………………………………………………………….....……….28
圖表………………………………………………………...…………..…31
1. H. Padamsee, ” The Science and Technology of Superconducting Cavities for Accelerators,” Superconductor Science and Technology, Vol. 14, pp. 28-51, 2001.
2. H. Padamsee, J. Knobloch and T. Hays, RF Superconductivety for Accelerators, Wiley Interscience, New York, 2000.
3. 羅國輝,王兆恩,張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
4. J. Knobloch, W. Hartung, and H. Padamsee, “Multipacting in 1.5-GHz Superconducting Niobium Cavities of the CEBAF Shape,” Report SRF 981012-09, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
5. J. Knobloch and H. Padamsee, “Enhanced Susceptibility of Nb Cavity Equator Welds To the Hydrogen Related Q-virus,” Report SRF 981012-12, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
6. H. Padamsee, “Review of Experience with HOM Damped Cavities,” Report SRF 980612-04, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
7. S. Belomestnykh, “The High Luminosity Performance of CESR with the New Generation Superconducting Cavity,” Report SRF 990407-03, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1999.
8. S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF System Upgrade for Short Bunch Operation of CESR,” Report SRF 010717-05, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 2001.
9. E. Chojmacki and J. Sears, “Superconducting RF Cavities and Cryogenics for the CESR III Upgrade,” Report SRF 990716-09, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1999.
10. M. G. Rao and P. Kneisel, “Mechanical Properties of High RRR Niobium at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 40, pp. 1383-1390, 1994.
11. K. Ishio, K. Kikuchi, J. Kusano, M. Mizumoto, K. Mukugi, A. Naito, N. Ouchi, Y. Tsuchiya, Tokai-mura, Ibaraki-ken, K. Saito and Tsukuba-shi, “Fracture Toughness and Mechanical Properties of Pure Niobium and Welded Joints for Superconduvting cavities at 4K,” Proceedings of SRF Workshop, Hsinchu, Taiwan, 1999.
12. J. Mammosser, R. Kneisel and J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” Report CEBAF 93-019, Continuous Electron Beam Accelerator Facility, Virginia, 1993.
13. G. H. Luo, L. H. Chang, C. C. Kuo, M. C. Lin, R. sah, T. T. Yang and Ch. Wang, “The Superconducting RF Cavity and 500mA Beam Current Upgrade Project at Taiwan Light Source,” Proceedings of European Particle Accelerator Conference, pp. 654-656, Vinena, Austria, 2000.
14. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the Mark II Cryostat,” Report SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1997.
15. J. Kirchgessner, “Thoughts on the very high value of dF/dP or pressure sensitivity of the B cell cavity in the MTM cryostat,” Report SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1994.
16. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo and P. J. Chou, “A Coupled-field Analysis on RF Cavity,” Partical Accelerator Conference, Chicago, U.S.A., 2001.
17. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc.
18. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Ins.
19. R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd ed., John Wiely & Sons, NewYork, 1989.
20. D. K. Cheng, Field and Wave Electromagnetics, Addison Wesley, New York, 1989.
21. B. Stephan, “Supplement of Worksheets and Useful Datas,” Short Courses in Cryogenics at SRRC, May, 1999.
22. S. Steven, Helium Cryogenics, Plenum Press, New York, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top