跳到主要內容

臺灣博碩士論文加值系統

(3.229.117.123) 您好!臺灣時間:2022/08/12 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭華發
研究生(外文):Hwa-Fa Cheng
論文名稱:板層級塑封球柵陣列電子構裝散熱效能之研究
論文名稱(外文):On the Thermal Dissipation of the Board-Level PBGA Electronic Packaging
指導教授:陳文華陳文華引用關係鄭仙志
指導教授(外文):Wen-Hwa ChenHsien-Chie Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:80
中文關鍵詞:板層級印刷電路板散熱效能散熱機制塑封球柵陣列
外文關鍵詞:Board-LevelPrinted Circuit BoardThermal PerformanceHeat Dissipation MechanismPlastic Ball Grid Array
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討板層級塑封球柵陣列(Plastic Ball Grid Array, PBGA)電子構裝之散熱機制。在自然對流環境下,板層級PBGA構裝產生之大部份熱量係先藉熱傳導作用傳導至印刷電路板(Printed Circuit Board, PCB),再經由PCB以熱對流及熱輻射方式散逸。因此,板層級PBGA構裝散熱效能將與晶片熱量傳導至PCB方式及PCB之結構設計息息相關。此外,由於PCB結構複雜,如何建立一簡單、精確之PCB等效熱傳分析模型,以縮短產品設計時程,均為本論文研究之重點。
本論文首先利用ANSYS有限單元分析套裝軟體建立一完整細緻之板層級PBGA構裝基準熱傳分析模型,並藉由紅外線熱像儀及熱測試晶片溫度量測實驗予以驗證。接著,本論文以此基準熱傳分析模型為基礎,深入探討PCB結構各項設計參數對於散熱效能之影響,包括內埋銅箔層之數量、位置,上訊號層厚度及散熱通孔等。至於PBGA散熱錫球及BT基板散熱通孔之數量、配置對於板層級PBGA構裝散熱效能之影響亦均以詳細分析。最後,本論文亦評估所發展之PCB等效熱傳分析模型之適用性。本論文除具學術價值外,其成果亦可做為電子構裝業者進行產品散熱增益設計之參考。

The main objective of this work is to study the heat dissipation mechanism of the board-level Plastic Ball Grid Array (PBGA) electronic packaging. Under a natural convection environment, the majority of the thermal dissipation of the board-level PBGA package is first conducted to Printed Circuit Board (PCB) and then carried through the PCB surface by convection and radiation. Therefore, the thermal performance of the board-level PBGA package is significantly dominated by the way of chip power dissipation conducted to PCB and different structural design of PCB. Besides, due to the complicated structure of PCB, a simple but accurate equivalent PCB thermal analysis model is also tackle in this work to reduce the product design process.
In this work, a detailed three-dimensional finite element model of the board-level PBGA package is first established as a benchmark using ANSYS finite element analysis program. The infrared (IR) thermography and thermal test die experiments are also performed to validate the benchmark finite element analysis model. Then, based on the established benchmark analysis model, the influences of various design parameters of PCB structure on the thermal performance are thoroughly studied, including the number and location of embedded copper layers, thickness of top signal layer and presence of thermal vias etc. The effects of number and allocation of thermal solder balls welded on PBGA package and thermal vias within BT-substrate on the thermal performance of the board-level PBGA package are also investigated in details. Finally, the efficiency of the established equivalent PCB thermal analysis model in this work is also evaluated. In addition of academic contributions, the results obtained would be of help for electronic packaging industry to perform thermal enhancement design of products.

摘要 ………………………………………………………………………I
目錄 ……………………………………………………………………III
表目錄 ……………………………………………………………………V
圖目錄……………………………………………………………………VI
第一章、 導論……………………………………………………………1
第二章、 問題描述………………………………………………………7
2.1 印刷電路板(PCB) ……………………………………………8
2.2 測試載具(PBGA)………………………………………………9
2.3 JEDEC熱阻量測規範 …………………………………………9
第三章、 等效導熱係數分析 …………………………………………12
3.1 散熱通孔之等效導熱係數 …………………………………12
3.2 PCB之等效導熱係數…………………………………………13
3.3 BT基板之等效導熱係數 ……………………………………15
第四章、 板層級PBGA構裝之熱傳分析 ………………………………16
4.1 基準熱傳分析模型 …………………………………………16
4.2 PCB等效熱傳分析模型………………………………………18
4.3 熱傳邊界條件 ………………………………………………18
第五章、 實驗量測 ……………………………………………………20
5.1 二極體TSP特性曲線實驗……………………………………20
5.2 自然對流下之熱阻量測 ……………………………………20
5.3 紅外線熱像儀溫度場量測 …………………………………21
第六章、 結果與討論 …………………………………………………23
6.1 基準熱傳分析模型之驗證 …………………………………23
6.2 PCB等效熱傳分析模型之評估………………………………25
6.3 PCB結構之參數分析…………………………………………27
6.4 散熱錫球及散熱通孔之熱傳分析 …………………………30
第七章、 結論與展望 …………………………………………………33
參考文獻…………………………………………………………………36
附表與附圖………………………………………………………………42

Berg, M.J., 1997,“Comparison of Component and System Level Thermal Performance for Various Thermally Enhanced Packages and PCB Layouts,” Electronic Packaging Technology Conference, pp. 69-74.
Billings, D., and Stout, R.P., 1995,“Effect on Observed Package Thermal Performance of System Board Metal Content,” Eleventh IEEE SEMI-THERM Symposium, pp. 31-36.
Chen, W.H., Cheng, H.C., and Shen, H.A., 2001,“On Effective Thermal Characterization and Management of Electronic Packaging,” in Proc. InterPack Conf., Hawaii, U.S.A.
Chiriac, V.A., and Lee, T.Y., 1999, “Thermal Strategy for Modeling the Wirebonded PBGA Packages,” in Proc. InterPack Conf., Vol. 1, pp. 287-293.
Culham, J.R., and Yovanovich, M.M., 1998,“Factors Affecting the Calculation of Effective Conductivity in Printed Circuit Boards,” InterSociety Conference on Thermal Phenomena, pp. 460-467.
Decruyenaere, H., Vanderstraeten, D., and Pergoot, A., 1999, “Advanced Thermal Resistance Characterization Technique for IC Packages,” Advances in Electronic Packaging, Vol. 1, pp. 993-998.
Edwards, D., 1996,“Development of JEDEC Standard Thermal Measurement Test Boards,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 19, No. 4, pp. 478-485.
Ellison, G.N., 1989,“Thermal Computations for Electronic Equipment,” R.E. Krieger Publishing Company, Mala-Bar, Florida.
Eyman, M., Johnson, Z., and Joiner, B., 1998,“Thermal Simulation and Validation of the Fast Static RAM 164-Lead FC-PBGA Package with Investigation of Package Thermal Performance in a Generic CPU Module,”Electronic Components and Technology Conference, pp. 62-69.
Funk, J.N., Menguc, M.P., Tagavi, K.A., and Cremers, C.J., 1991,“A Semi-Analytical Method to Predict Printed Circuit Board Package Temperatures,” Seventh IEEE SEMI-THERM Symposium, pp. 7-14.
Graebner, J.E., and Azar, K., 1997,“Thermal Conductivity Measurements in Printed Wiring Boards,” Journal of Heat Transfer, Vol. 119, pp. 401-405.
Guenin, B.M., Marrs, R.C., and Molnar, R.J., 1995, “Analysis of a Thermally Enhanced Ball Grid Array Package,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 4, pp. 749-756.
Hwang, C.-B., 1999,“Thermal Design for Flip Chip on Board in Natural Convection,” Fifteenth IEEE SEMI-THERM Symposium, pp. 125-132.
Incropera, F.K., and DeWitt, D.P., 1985,“Fundamentals of Heat and Mass Transfer,” John Wiley and Sons, Inc., New York.
JEDEC Standard EIA/JESD51, 1995, “Methodology for the Thermal Measurement of Component packages (Single Semiconductor Device).”
JEDEC Standard EIA/JESD51-1, 1995, “Integrated Circuits Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device).”
JEDEC Standard EIA/JESD51-2, 1995, “Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air).”
JEDEC Standard EIA/JESD51-9, 1995, “Test Boards for Area Array Surface Mount Package Thermal Measurements.”
Johnson, Z., and Eyman, M., 1998,“Design-Based Thermal Simulation Methodology for Ball Grid Array Packages,” InterSociety Conference on Thermal Phenomena, pp. 82-87.
Johnson, Z., Ramakrishna, K., Joiner, B., and Eyman, M., 1997, “Thermal Sub-Modeling of the Wirebonded Plastic Ball Grid Array Package,” Thirteenth IEEE SEMI-THERM Symposium, pp. 1-9.
Joiner, B., 2001, “Effect of Flag Design on Thermal Performance of PBGA Packages,”Seventeenth IEEE SEMI-THERM Symposium, pp. 223-227.
Joiner, B., and Adams, V., 1999, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Fifteenth IEEE SEMI-THERM Symposium, pp. 212-220.
Joiner, B., Siegal, B., Tarter, T., and Bright, B., 1996,“Use of Experimental Data in Guiding Thermal Specification Development,” Twelfth IEEE SEMI-THERM Symposium, pp. 65-71.
Kitahara, T., and Nakai, K., 1997,“Thermal Analysis for High-Performance Small Devices,” The International Journal of Microcircuits and Electronic Packaging, Vol. 20, pp. 274-281.
Lau, J., Chen, T., and Lee, S.-W.R., 1999,“Effect of Heat-Spreader Sizes on the Thermal Performance of Large Cavity-Down Plastic Ball Grid Array Packages,” Journal of Electronic Packaging, Vol. 121, pp. 242-248.
Lee, T.-Y.T., 2000,“An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool,”IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 3, pp. 481-488.
Lemczyk, T.F., Mack, B.L., Culham, J.R., and Yovanovich, M.M., 1992,“PCB Trace Thermal Analysis and Effective Conductivity,” Journal of Electronic Packaging, Vol. 114, pp. 413-418.
Li, R.S., 1998,“Optimization of Thermal Via Design Parameters Based on an Analytical Thermal Resistance Model,” InterSociety Conference on Thermal Phenomena, pp. 475-480.
Loh, C.V., Toh, K.C., Pinjala, D., and Iyer, M.K., 2000, “Development of Effective Compact Models for Depopulated Ball Grid Array Packages,” Electronic Packaging Technology Conference, pp. 131-137.
Lohan, J., Tiilikka, P., Rodgers, P., Fager, C.-M., and Rantala, J., 2000, “Experimental and Numerical Investigation into the Influence of Printed Circuit Board Construction on Component Operating Temperature in Natural Convection,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 3, pp. 578-586.
Lohan, J., Tiilikka, P., Rodgers, P., Fager, C.-M., and Rantala, J., 2000,“Experimental Validation of Numerical Heat Transfer Predictions for Single- and Multi-Component Printed Circuit Boards in Natural Convection Environments,” Fifteenth IEEE SEMI-THERM Symposium, pp. 54-64.
Manno, V.P., Kurita, N.R., and Azar, K., 1993, “Experimental Characterization of Board Conduction Effects,” Ninth IEEE SEMI-THERM Symposium, pp. 127-135.
Mertol, A., 1996,“Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages,”IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 2, pp. 427-443.
Mulgaonker, S., and Berg, H.M., 1996,“Thermal Sensitivity Analysis for the 119 PBGA - A Framework for Rapid Prototyping,”IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 19, No. 1, pp. 66-75.
Mulgaonker, S., Chambers, B., and Mahalingam, M., 1995,“An Assessment of the Thermal Performance of the PBGA Family,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 4, pp. 739-748.
Nelson, R.D., 2001, “Wiring Statistics and Printed Wiring Board Thermal Conductivity,” Seventeenth IEEE SEMI-THERM Symposium, pp. 252-260.
Ozisik, M.N., 1979,“Heat Conduction,” John Wiley and Sons, Inc., New York.
Pinjala, D., Iyer, M.K., Guan C.S., and Rasiah, I.-J., 2000,“Thermal Characterization of Vias Using Compact Models,”Electronics Packaging Technology Conference, pp. 144-147.
Ridsdale, G., Joiner, B., Bigler, J., and Torres, V.M., 1996, “Thermal Simulation to Analyze Design Features of Plastic Quad Flat Packages,” The International Journal of Microcircuits and Electronic Packaging, Vol. 19, pp. 103-109.
Sarvar, F., Poole, N.J., and Witting, P.A., 1990,“PCB Glass-Fibre Laminates: Thermal Conductivity Measurements and Their Effect on Simulation,”Journal of Electronic Materials, Vol. 19, No. 12, pp. 1345-1350.
Shaukatullah, H., and Gaynes, M.A., 1994, “Experimental Determination of the Effect of Printed Circuit Card Conductivity on the Thermal Performance of Surface Mount Electronic Packages, ” Tenth IEEE SEMI-THERM Symposium, pp. 44-52.
Shidore, S., Adams, V., and Lee, T.-Y.T., 2001,“A Study of Compact Thermal Model Topologies in CFD for a Flip Chip Plastic Ball Grid Array Package,”IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 191-198.
Simeza, L.M., and Yovanovich, M.M., 1990,“Thermal Analysis of Multilayer Printed Circuit Boards Using a Hybrid Integral-Thermal Network Method,” Heat Transfer in Electronic and Microelectronic Equipment, New York, Hemisphere Pub., pp. 1015-1027.
Sweatlock, L., Lischner, D., and Weiss, J., 2001,“Thermal Characterization of Plastic Ball Grid Array Packages via Infrared Thermography,” Electronic Components and Technology Conference, pp. 1367-1371.
Triplett, C.E., and Joiner, B., 1998, “An Experimental Thermal Characterization of a 272 PBGA within an Automotive Engine Controller Module,”Fourteenth IEEE SEMI-THERM Symposium, pp. 47-54.
Wang, W., Liou, S., and Sun, Y.S., 2000, “Bridging the Gap: Package Level and System Level Thermal Modeling,” Electronic Components and Technology Conference, pp. 287-293.
Wu, F., Lau, J., and Chen, K.-L., 1997,“Thermal Evaluation of a Cost-Effective Plastic Ball Grid Array Package — NuBGA,” Electronic Components and Technology Conference, pp. 309-318.
Ying, T.M., and Toh, K.C., 2000,“A Heat Spreading Resistance Model for Anisotropic Thermal Conductivity Materials in Electronic Packaging,” InterSociety Conference on Thermal Phenomena, pp. 314-321.
Yoneda, N., Kitano, M., and Miura, H., 1999, “Structural Design System for Thermally Enhanced LSI Packages,” Electronic Components and Technology Conference, pp. 1088-1095.
Zahn, B.A., 1999,“Optimizing Cost and Thermal Performance: Rapid Prototyping of a High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Package,” Fifteenth IEEE SEMI-THERM Symposium, pp. 133-141.
Zhou, T., and Hundt, M., 1996,“Board and System Level Effects on Plastic Package Thermal Performance,” Electronic Components and Technology Conference, pp. 911-917.
Zhou, T., Hundt, M., Villa, C., Bond, R., and Lao, T., 1997,“Thermal Study for Flip Chip on FR-4 Boards,” Electronic Components and Technology Conference, pp. 879-884.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top