跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/29 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡嘉育
研究生(外文):Chia-Yu Tsai
論文名稱:覆晶構裝底填膠材料機械性質及可靠度分析
論文名稱(外文):Material Property of Underfill and Reliability Analysis in Flip Chip Package
指導教授:葉孟考葉孟考引用關係
指導教授(外文):Meng-Kao Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:81
中文關鍵詞:覆晶構裝底填膠可靠度分析
外文關鍵詞:Flip Chip PackageUnderfillReliability Analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
覆晶級構裝中底填膠(Underfill)與基板等材料皆具有與溫度相依及吸濕特性,在承受高溫迴焊過程中會產生熱應力,使材料機械性質產生變化而影響產品可靠度;而由於點膠完成的覆晶構裝體因熱膨脹係數(CTE)不同所遭遇不同溫度場之應力破壞,可藉由改變覆晶構裝之不同底填膠材料配方,填角(Fillet),晶片(Die)尺寸大小厚度,凸塊(Solder Bump)高度等因素,進而求得構裝體最佳可靠度。
本文針對構裝材料中具吸水性的有機材料探討溫度對其機械性質的影響,藉此建立材料對溫度之相關資料供分析使用;而含不同底填膠材料之覆晶級構裝,藉由應力分析及參數化研究可獲得構裝體之可靠度。結果顯示晶片厚度為400 m時或底填膠的填角為30o時或底填膠的厚度為120 m時或底填膠的楊氏模數增加為5.82 GPa時,較其他參數值的構裝體可存活的循環次數為高。從分析結果可知改變底體填膠填角、底填膠楊氏模數以及溼氣效應對構裝體之可靠度有明顯的影響;而改變晶片厚度以及底填膠厚度對構裝體的可靠度影響較少。
目錄
頁次
摘要………………………………………………………………………i
致謝………………………………………………………………………ii
目錄………………………………………………………………………iii
圖表目錄…………………………………………………………………v
第一章 緒論………………………………………………………………1
1.1 研究動機……………………………………………………………2
1.2 文獻回顧……………………………………………………………3
1.3 研究主題……………………………………………………………6
第二章 實驗內容及程序…………………………………………………8
2.1 實驗設備……………………………………………………………8
2.2 試片製作……………………………………………………………10
2.3 實驗步驟……………………………………………………………10
2.4 實驗結果……………………………………………………………11
第三章 有限單元分析……………………………………………………16
3.1 熱傳導分析…………………………………………………………16
3.2 溼氣吸收擴散分析…………………………………………………17
3.3 溼熱應力分析………………………………………………………19
3.4 有限單元分析………………………………………………………20
3.5 破壞準則……………………………………………………………21
3.6 可靠度分析…………………………………………………………22
第四章 分析結果與討論…………………………………………………24
4.1 數值收斂性…………………………………………………………24
4.2 熱循環分析…………………………………………………………25
4.3 參數研究……………………………………………………………26
第五章 結論………………………………………………………………30
參考文獻…………………………………………………………………31
圖表………………………………………………………………………36
1. 工業技術研究院工業材料所IT IS電子構裝技術發展分析, 1998/7.
2. Lau, J. H., Flip Chip Technologies, McGraw-Hill, New York, 1995.
3. 工業材料雜誌, 1998/7.
4. Tay, A. A. O., Tan, G.L. and Lim, T. B., “Predicting Delamination in Plastic IC Package and Determining Suitable Mold Compound Properties,” IEEE Transactions on Components, Package, and Manufacturing Technology — Part B, Vol 17, No. 2, pp. 201-208, May 1994.
5. 林鴻穎, “電子構裝材料受溼度影響之機械性質,” 國立清華大學動力機械工程學系碩士論文, 2001.
6. Yao, Q., Qu, J., Wu, J. and Wang, C. P., “Characterization of Underfill/Substrate Interfacial Toughness Enhancement by Silane Additives,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 22, No. 4, pp. 264-268, October 1999.
7. Jiao, J., Gurumuthy, C. K., Kramer, E. J., Sha, Y., Hui, C. Y. and Borgesen, P., “Measurement of Interfacial Fracture Toughness Under Combined Mechanical and Thermal Stresses,” ASME Journal of Electronic Packaging, Vol. 120, pp. 349-353, December 1998.
8. Rzepka, S, Korhonen, M. A., Meusel, E. and Li, C.-Y.., “The Effect of Underfill and Underfill Delamination on the Thermal Stress in Flip-Chip Solder Joints” ASME Journal of Electronic Packaging, Vol. 120, pp. 342-348, December 1998.
9. Lau, J. H., Chang, C. and Chen, R., “Effects of Underfill Encapsulant on the Mechanical and Electrical Performance of a Functional Flip Chip Device,” IEEE Polymetric Electronics Packaging, pp. 265-272, 1997.
10. Ren, W., Qian, Z. and Liu, S., “Scale Effects on Packaging Materials,” IEEE Electronic Components and Technology Conference, pp. 1229-1234, 1999.
11. 徐永昱, “底膠填充(underfill)材料在不同環境及介面條件下之介面剪力與破壞模式分析,” 國立清華大學動力機械工程學系碩士論文, 2001.
12. Tay, A. A. O. and Lin, T. Y., “Moisture-Induced Interfacial Delamination Growth in Plastic IC Package,” IEEE Electronic Components and Technology Conference, pp. 371-378, 1998.
13. Gannamani, R. and Pecht, “An Experiment Study of Popcorning in Plastic Encapsulated Microcircuits,” IEEE Transactions on Components, Packaging Manufacturing Technology — Part A, Vol. 19, No. 2, pp. 194-201, June 1996.
14. Ahn, S. H. and Kwon, Y. S., “Popcorn Phenomena in a Ball Gird Array Package,” IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part B, Vol. 18, No. 3, pp. 491-495, August 1995.
15. Galloway, J. E. and Miles, B. M., “Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology─Part A, Vol 20, No 3, pp. 274-279, 1997.
16. Yip, L., Massingill, T. and Naini, H., “Moisture Sensitivity Evaluation of Ball Grid Array Packages,” Electronic Components and Technology Conference, Orlando, FL, USA, May 28-31, pp. 829-835, 1996.
17. Yeh, M. K. and Chang, K. C., “Failure Prediction in Plastic Ball Grid Array Electronic Packaging,” InterPACK’99, Hawaii, June 13-18, EEP-Vol. 26-1, pp. 469-474, 1999.
18. 李英舜, “塑封球柵陣列電子構裝之破裂延伸,” 國立清華大學動力機械工程學系碩士論文, 2000.
19. Ileri, L. and Madenci, E., “Crack Initiation and Growth in Electronic Packages,” Electronic Components and Technology Conference, pp. 970-976, 1995.
20. Mercado, L. L., Sarihan, V. and Hauck, T., “An Analysis of Interface Delamination In Flip-Chip Packages,” IEEE Electronic Components and Technology Conference, pp. 1332-1337, 2000.
21. Lau, J. H. and Lee, S. W. R., “Temperature-Dependent Popcorning Analysis of Plastic Ball Grid Array Package During Solder Reflow with Fracture Mechanics Method,” ASME Journal of Electronic Packaging, Vol. 122, pp. 34-41, March 2000.
22. Tay, A. A. O. and Lin, T., “Moisture Diffusion and Heat Transfer in Plastic IC Packages,” IEEE Transactions on Components, Packaging, And Manufacturing Technology — Part A, Vol. 19, No. 2, pp. 186-193, June 1996.
23. Saitoh, T. and Toya, M., “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loading — Part II: Using Alloy 42 as Leadframe Material,” IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part B, Vol. 20, No. 2, pp. 176-183, May 1997.
24. Saitoh, T., “Numerical Stress of Resin Cracking in LSI Plastic Package under Temperature Cyclic Loading,” IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part B, Vol. 19, No. 3, pp. 593-600, August 1996.
25. Yip, L., “Moisture Sensitivity and Reliability of Plastic Thermally Enhanced QFP Packages,” IEEE Transactions on Components, Packaging Manufacturing Technology — Part B, Vol. 18, No. 3, pp. 485-490, August 1995.
26. Yeh, M. K., Chiang, K. N. and Su, J. A., “Thermal Stress Analysis of Thermally-Enhanced Plastic Ball Grid Array Electronic Packaging,” IPACK’2001-15537, Hawaii, July 8-13, 2001.
27. Lu, J., Smith, B. and Baldwin, D. F., “Adhesion Characterization of No-Flow Underfills in Flip Chip Assemblies and Correlation Reliability,” IEEE Electronic Components Technology Conference, pp. 343-347, 2000.
28. Yan, X. and Agarwal, R. K., “Two Test Specimens for Determining the Interfacial Fracture Toughness in Flip-Chip Assemblies,” ASME Journal of Electronic Packaging, Vol. 120, pp. 150-155, June 1998.
29. Wang, J., Lu, M., Zou, D. and Liu, S., “Investigation of Interfacial Fracture Behavior of a Flip-Chip Package Under a Constant Concentrated Load,” IEEE Transactions on Component, Packaging, and Manufacturing Technology — Part B, Vol. 21, pp. 79-86, February 1998.
30. Lei, L., Mercado, and Sarihan, V., “Evaluation of Die Edge Cracking in Flip-Chip PBGA Packages,” IEEE Inter Society on Thermal Phenomena Conference, pp. 73-78, 2000.
31. Sundararaman, V. and Sitaraman, S. K., “Determination of Fracture Toughness for Metal/Polymer Interfaces,” ASME Journal of Electronic Packaging, Vol. 121, pp. 275-281, December 1999.
32. Fan, X. J., Wang, H. B. and Lim, T. B., “Investigation of the Underfill Delamination and Cracking in Flip-Chip Modules under Temperature Cyclic Loading,” Electronic Components and Technology Conference, pp. 994-1000, 1999.
33. Shim, J. B., Ahn, E. C., Cho, T. J., Moon, H. J., Chung, T. G., Lyu, J. H., Kwon, H. K., Kang, S. Y. and Oh, S. Y., “Mechanisms of Die and Underfill Cracking in Flip Chip PBGA Packages,” International Symposium on Advanced Packaging Materials, pp. 201-205, 2000.
34. 郭家泰, private communication.
35. JEDEC, JESD22-A104-B, July 2000, “Temperature Cycling,” JEDEC Standard, Electronic Industries Association, Arlington, VA, pp. 1-9.
36. JEDEC, JESD22-A113-A, June 1995, “Preconditioning of Plastic Surface Mount Device Prior to Reliability Testing,” JEDEC Standard, Electronic Industries Association, Arlington, VA, pp. 1-5.
37. Bejan, A., Heat Transfer, Wiley, New York, 1993.
38. Cook, R. D., Malkus, D. S. and Plesha, M. E., Concepts and Applications of Finite Element Analysis, 3rd ed., Ch. 16, Ch. 17, Wiley, New York, 1989.
39. 蒙彥良, “塑封球柵陣列電子構裝之濕熱應力分析,” 國立清華大學動力機械工程學系碩士論文, 1998.
40. ANSYS Theory Reference. 001369. Twelfth. SAS IP, Inc.
41. Chang, K. C., Yeh, M. K. and Chiang, K. N., “Hygrothermal Stress Analysis of Plastic Ball Grid Array During Solder Reflow,” submitted to Journal of Mechanical Engineering Science, Paper No. C07302, 2002.
42. Ansel, C. U. and Saul, K. F., Advanced Strength and Applied Elasticity, 3rd ed, Ch. 4, Prentice-Hall PTR, New Jersey, 1998.
43. Qian, Z. and Liu, S., “On the Life Prediction and Accelerated Testing of Solder Joints,” ASME Journal of Thermal-Mechanical Characterization of Evolving Packaging Materials and Structures, Vol. 24, pp. 1-11, 1998.
44. Hong, B. Z., Tuan, T. D. and Burrell, L., “Anisothermal Fatigue Analysis of Solder Joints in a Convective CBGA Package Under Power Cycling,” Sensing, Modeling and Simulation in Emerging Electronic Packaging, ASME, EEP-Vol.17, pp.39-46, 1996.
45. 陳守龍, 蔡振榮, 吳恩柏, 邵清安, “覆晶構裝參數化之研究,” 中國機械工程學會, 第十八屆全國學術研究會論文集.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊