跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/14 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝哲偉
研究生(外文):Jerwei Hsieh
論文名稱:BELST高深寬比微加工製程平台及其應用
論文名稱(外文):The BELST Fabrication Platform for High-Aspect-Ratio Micromachining and Its Applications
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:163
中文關鍵詞:微機電系統高深寬比陀螺儀共振器角落補償貝爾斯特
外文關鍵詞:MEMSHigh aspect ratioGyroscopeResonatorCorner compensationBELST
相關次數:
  • 被引用被引用:3
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
微機電系統(MEMS)元件能脫穎於既有產品,成熟的微加工製程平台扮演著極關鍵之角色。本論文根源高深寬比微加工技術(HARM)之結構特徵及材料優點等開發價值,提出一獨特的BELST高深寬比微加工製程平台,其整合了矽深蝕刻技術、(111)單晶矽製程、以及摻硼矽之蝕刻終止特性,輔以如硼支柱角落補償法、防護牆設計、多重結構厚度製造法、特殊垂直梳狀電極等等新型設計,使其不僅能突破現有HARM所普遍存在之結構寬度、厚度、以及自由度等製造限制,並具有能使各型同平面或出平面運動微元件同時在此平台上實現之多樣性製造能力。本論文並同時以雙質塊共振器、以及諧振式微陀螺儀作為研究載具,進一步地探討該平台於靜電致動器與感測器元件之應用。在雙質塊共振器方面,本設計整合了具振幅放大效果之雙自由度振動系統與具衝程-電壓取捨設計特性之斜齒形梳狀致動器;其經由BELST製程平台實現並加以測試,已獲致大振幅、小驅動電壓之預期結果。在諧振式微陀螺儀方面,本文整理了機械結構設計於精確性與準確性提昇上之考量,並據以提出包括單軸及雙軸感測微陀螺儀之微陀螺儀結構設計;經由成品結構之觀察可證實所需之諸多設計特徵皆可實現,而初步驗證了BELST製程平台在微陀螺儀製造上之可行性。由於該製程具有實施簡單、設計限制少、與製造多樣化等特徵,預期將可廣泛應用於微機電系統中,成為一穩定而通用之高深寬比微加工製程平台。
High-Aspect-Ratio Micromachining (HARM) developed recent years has made many devices more versatile compared with surface micromachining process, but it also met some challenges not occurred before. Those issues, which made HARM structure design with thickness/width limitation as well as DOF constraint, are discussed in this work. Accordingly, a novel BELST Fabrication Platform that exploits the (111) wafer process and heavily boron diffusion is proposed. Through some delicate designs in this platform, those design constraints can substantially been reduced, and various microstructure demands of in-plane/out-of-plane devices can also be fulfilled. To further prove it’s feasibility in electrostatic actuators and sensors, Dual Mass Resonator (DMR) and Micro Vibrating Gyroscope (MVG) are studied as the research carrier in this thesis. All the design features incorporated in DMR and MVG design are successfully fabricated using BELST fabrication platform, while the resonator testing also reveals the expected result. In summary, the developed BELST Fabrication Platform can possess most existing merits as well as resolve many design constraints in existing HARM process. Its capability and simplicity are believed to make itself more competitive and promising for many applications.
中文摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 前言 1
1-1 研究動機 1
1-2 研究背景 3
1-2-1傳統矽基微加工 3
1-2-2高深寬比微結構製造方式 4
1-3 研究目標 7
1-4 全文架構 8
第二章 BELST製程平台 15
2-1 (111)矽晶片製程 16
2-1-1 (111)矽晶片特性 16
2-1-2 (111)矽晶片製程 19
2-2 BELST製程 21
2-2-1製造流程 21
2-2-2元件對基材之絕緣 23
2-2-3製造結果 26
2-3 擴充型BELST製程平台 27
2-3-1出平面運動元件所需結構 28
2-3-2垂直梳狀致動器之設計考量 30
2-3-3擴充型BELST製程平台 34
2-3-4製造結果 37
2-4 討論 37
2-5 小結 39
第三章 靜電致動器應用:雙質塊共振器 62
3-1 雙自由度系統簡介 63
3-2 雙自由度系統設計考量 64
3-2-1振動系統之數學形式 65
3-2-2響應與設計參數之趨勢關係 67
3-3 斜齒型梳狀致動器 71
3-3-1設計考量 72
3-3-2製造與測試 74
3-4 雙質塊共振器 75
3-4-1雙質塊共振器設計 75
3-4-2製造與測試 75
3-5 小結 76
第四章 慣性感測器應用:諧振式微陀螺儀 91
4-1 諧振式微陀螺儀介紹 91
4-1-1傳統陀螺儀 91
4-1-2諧振式微陀螺儀 92
4-1-3微陀螺儀整體架構 94
4-1-4微陀螺儀應用 95
4-2 微陀螺儀結構設計考量 96
4-2-1操作原理與元件規格 96
4-2-2文獻回顧 99
4-2-3提升精確性 103
4-2-3提升準確性 106
4-3 微陀螺儀設計與製造 108
4-3-1單軸諧振式微陀螺儀 108
4-3-2雙軸諧振式微陀螺儀 110
4-3-3製造結果與討論 112
4-4 小結 114
第五章 總結 128
參考文獻 131
附錄A 矽基材之蝕刻 140
A-1 含多層遮罩之電漿耦合深蝕刻 140
A-2 硼蝕刻終止層與鹼溶液之矽蝕刻 142
附錄B 電路設計考量 147
B-1 電極與電路介面 147
B-2 振幅控制迴路設計 148
B-3 感測電路設計 151
B-4. 共振頻率之偏壓調變法 155
附錄C 量測環境 159
論文著作 162
[1] J. Hsieh and W. Fang, "Fabrication and Measurement of an Improved Micro Electrostatic Torsional Actuator," Transducers''99, Sendai, Japan, June 1999, pp.1376-1379.
[2] M. -J. Zheng, Microstructure Fabrication Using Inductively Coupled Plasma Etching And Its Application, Master Thesis, NTHU, Taiwan, ROC, 2000.
[3] Y. Gianchandani and K. Najafi, "A Bulk Silicon Dissolved Wafer Process for Microelectromechanical Devices," J. Microelectromech. Syst., vol.1, pp.77-85, 1992.
[4] C. G. Keller and R. T. Howe, “HexSil Tweezers for Teleoperated Micro-Assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77.
[5] F. Ayazi and K. Najafi, “High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology,” J. Microelectromech. Syst., vol. 9, pp. 288-294, 2000.
[6] K.A. Shaw, Z.L. Chang, and N.C. MacDonald, “SCREAM I: A Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for MicroElectroMechanical Structures”, Sensors and Actuators A, vol.40, pp.210-213, 1994.
[7] T. D. Kudrle, H. P. Neves, D. C. Rodger, and N.C. MacDonald, “A Microactuated Millimeter Wave Phase Shifter,” Transducers''99, Sendai, Japan, June 1999, pp.1276-1279.
[8] X.Y. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “Fabrication of a Single Crystalline Silicon Capacitive Lateral Accelerometer Using Micromachining Based on Single Step Plasma Etching,” MEMS’95, Amsterdam, Netherlands, Feb. 1995, pp. 398-403.
[9] W.H. Juan and S.W. Pang, “Released Si Microstructures Fabricated by Deep Etching and Shallow Diffusion,” J. Microelectromech. Syst., vol. 5, pp 18-23, 1996.
[10] M. E. McNie, D. O. King, and M. C. L. Ward, “Micromachining in SOI,” Recent Advances in Micromachining Techniques (Digest No: 1997/081), IEE Colloquium, 20, Nov. 1997, pp. 5/1 -5/4.
[11] J. T. Nee, Hybrid Surface-/Bulk-Micromachining Processes for Scanning Micro-Optical Components, Ph.D dissertation, U.C. Burkeley, 2001.
[12] S. Lee, S.Park, and D. Cho, “The Surface/Bulk Micromachining (SBM) process: A New Method for Fabricating Released MEMS in Single Crystal Silicon,” J. Microelectromech. Syst., vol.8, pp.409-416, 1999.
[13] E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T.A. Kovacs, “Silicon Fusion Bonding and Deep Reactive Ion Etching a New Technology for Microstructures,” Tansducers’95, Stockholm, Sweden, June 1995, pp.556-559.
[14] S. -H. Kim, S.-H. Lee and Y.-K. Kim, “A High-Aspect-Ratio Comb Actuator Using UV-LIGA Surface Micromachining and (110) Silicon Bulk Micromachining,” Journal of Micromechanics and Microengineering, vol. 12, pp. 128-135, 2002.
[15] H. Jansen, M. de Boer, and M. Elwenspoek, “Black silicon method VI: High aspect ratio trench etching for MEMS applications,” MEMS’96, San Diego, CA, Feb. 1996, pp. 250-257.
[16] M. de Boer, H. Jansen, and M. Elwenspoek, “The Black Silicon Method V: A Study of The Fabricating of Movable Structures for Micro Electromechanical Systems,” Tansducers’95, Stockholm, Sweden, June 1995, pp. 565-568.
[17] K. A. Shaw and N.C. MacDonald, “Integrating SCREAM Micromachined Devices with Integrated Circuits,” MEMS’96, San Diego, CA, Feb. 1996, pp. 44-48.
[18] S. Lee, S. Park, J. Kim, S. Lee, and D. Cho, “Surface/Bulk Micromachined Single-crystaline-silicon micro-gyroscope,” J. Microelectromech. Syst., vol.9, pp.557—567, 2000.
[19] V. Milanovic, M. Last, and K. S. J. Pister, “Torsional Micromirrors with Lateral Actuators,” Transducers''01, Munich, Germany, June 2001, pp.1298-1301.
[20] Selvakumar, K. Najafi, W. H. Juan, and S. Pang, “Vertical comb array microactuators,” MEMS’95, San Diego, CA, Jan. 1995, pp.43-48.
[21] J. A. Yeh, H. Jiang, and N. C. Tien, “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for an Electrostatic Torsional Actuator,” J. Microelectromech. Syst., vol.8, pp.456—465, 1999.
[22] H. -M. Jeong, J. -J. Choi, K. Y. Kim, K. B. Lee, J. U. Jeon, and Y. E. Pak, “Milli-scale Mirror Actuator with Buck Micromachined Vertical Combs,” Transducers''99, Sendai, Japan, June 1999, pp.1006-1009.
[23] R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A Flat High-Frequency Scanning Micromirror,” Solid-State Sensors and Actuators Workshop 2000, Hilton head, SC, June 2000, pp. 6-9.
[24] J. Kim, S. Park, and D. Cho, “A Novel Electrostatic Vertical Actuator Fabricated in one Homogeneous Silicon Wafer Using Extended SBM Technology,” Transducers’01, Munich, Germany, June 2001, vol.1, pp.756-759.
[25] H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, pp 715-722, 2000.
[26] K.E. Peterson, “Silicon as a Mechanical Material,” Proceedings of the IEEE, vol. 70, pp.420-457, 1982.
[27] http://www.jahm.com/:Temperature Dependent Elastic & Thermal Properties Database.
[28] M. Madou, Fundamentals of Microfabrication, CRC press, New York, 1997.
[29] R.E. Oosterbroek, J.W. Berenschot, H.V. Jansen, A.J. Nijdam, G. Pandraud, A. van den Berg, and M.C. Elwenspoek, “Etching Methodologies in <111>-oriented silicon wafers,” J. Microelectromech. Syst., vol.9, pp.390-398, 2000.
[30] J. Kim, D. Cho, and R.S. Muller, “Why is (111) Si a batter mechanical material for MEMS?” Transducers’01, Munich, Germany, June 2001, vol.1, pp.662-665.
[31] B.C.S. Chou, C.-N. Chen, and J.-S. Shie, “Micromaching on (111)-oriented silicon,” Sensors and Actuator A, vol. 75, pp. 271-277, 1999.
[32] J. G. Fleming, “Combining the best of bulk and surface micromichining using Si {111} substrate,” in Proc. of SPIE, vol. 3511, Santa Clara, CA, Sep.1998, pp.162-168.
[33] H. -H. Hu, H.-Y. Lin, B.C.-S. Chou, and W. Fang, "Characteristics of the Micromachined Beams on the (111) Substrate," Sensors and Actuators A, vol. 93, pp. 258-265, 2001.
[34] S. C. Lee, S. Park, and D. Cho, “Honeycomb-Shaped Deep-Trench Oxide Posts Combined with the SBM Technology for Micromachining Single-Crystal Silicon without using SOI,” Transducers''01, Munich, Germany, June 2001, pp.1124-1127.
[35] S. Lee, B.-L Lee, K. D. Jung, J. H. Choi, T.-R. Chung, and Y. C. Cho, “Extension of Surface/Buck Micromachining: One-Mask Fabrication Technology Enabling the Integration of 6-DOF Inertial Sensors on A Single Wafer,” Transducers''01, Munich, Germany, June 2001, pp.1136-1139.
[36] S. M. Sze, Semiconductor Devices-Physics and Technology, John Wiley & Sons, New York, 1985.
[37] J. Kiihamaki, H. Kattelus, and S. Franssila, “Depth and Profile Control in Plasma Etched MEMS Structures,” Transducers''99, Sendai, Japan, June 1999, pp. 858-861.
[38] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, vol. 6, pp. 320-329, 1996.
[39] P. Jaecklin, C. Linder, and N. F. de Rooij, “Line-addressable torsional micromirrors for light modulator arrays,” Sensors and Actuators A, vol. 41-42, pp 324-329, 1994.
[40] J. A. Yeh, C. -Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric combdrive,” J. Microelectromech. Syst., vol.9, pp. 126-135, 2000.
[41] J. Hsieh, C. C. Chu, J. M. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Applications,” IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August 2002, Paper WP 39.
[42] J. M. Tsai, C. C. Chu, J. Hsieh, and W. Fang, “A Large Out-of-plane Motion Machanism for Optical Application,” IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August 2002, Paper WP 2.
[43] M. Hoffmann and E. Voges, “Bulk silicon micromachining for MEMS in optical communication systems,” Journal of Micromechanics and Microengineering, vol.12, pp. 349-360, 2002.
[44] A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, “TMAH/IPA Abisotropic Etching Characteristics,” Sensors and Actuators A, Vol. 37-38, pp.737-743, 1993.
[45] I. Zubel and M. Kramkowska, “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions” Sensors and Actuators A, Vol. 93, pp.138-147, 2001.
[46] R. Legtenberg, J. Gilbert, S. D. Senturia, and M. Elwenspoek, “Electrostatic Curved Electrode Actuators,” J. Microelectromech. Syst., vol. 6, pp. 257-265, 1997.
[47] C.W. Dyck, J. J. Allen and R. J. Huber, “Parallel-Plate Electrostatic Dual-Mass Oscillator”, Proceeding of the SPIE, vol. 3876, pp. 198-209.
[48] T. Usuda, “Operational Characteristics of Electrostatically Driven Torsional Resonator with Two Degrees of Freedom,” Sensors and Actuators A 64, pp. 255-257, 1998.
[49] X. Li, R. Lin, and K. W. Leow, “Performance-enhanced Micro-machined Resonant Systems with Two-degrees-of-freedom Resonators,” Journal of Micromechanics and Microengineering, vol. 10, pp. 534-539, 2000.
[50] X. Li, T. Ono, R. Lin, and M. Esashi, “Much Enlarged Resonant Amplitude of Micro-resonator with Two-degree-of-freedom (2-DOF) Mechanical Coupling Scheme,” Transducers''01, Munich, Germany, June 2001, pp.1106-1109.
[51] H.-Y. Lin, H.-H. Hu, W. Fang, and R. S. Huang, “High Resolution Micromachined Scanner Mirror,” Transducers''01, Munich, Germany, June 2001, pp.1310-1313.
[52] S. Rao, Mechanical Vibrations, 3rd ed., Addison-Wesley, 1995.
[53] Z. Kadar, W. Kindt, A. Bossche, and J. Mollinger, “Quality factor of torsional resonators in the low-pressure region,” Sensors and Actuators A 53, pp.299-303, 1996.
[54] http://www.vectronix.com.tw/page2.htm:Vectronix System Inc, Taiwan.
[55] J. Mohr, M. Kohl, and W. Menz, "Micro Optical Switching by Electrostatic Linear Actuator with Large Displacements," Transducers''93, Yokohama, Japan, June 1993, pp.120-123.
[56] M. A. Rosa, S. Dimitrijev, and H. B. Harrison, “Enhanced Electrostatic Force Generation Capability of Angled Comb Finger Design Used in Electrostatic Comb-drive Actuators,” Electronics Latters, no.18, pp.1787-1788, 1998.
[57] G. K. Fedder and R. T. Howe, “Multimode Digital Control of a Suspended Polysilicon Microstructure,” J. Microelectromech. Syst., vol.5, pp.283-297, 1996.
[58] Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control, 2nd Ed., New York, NY: Springer-Verlag, 1998.
[59] J. Soderkvist, "Micromachined gyroscope", Sensors and Actuators A, 43, pp.65-71, 1994.
[60] W. Geiger, W.U.Butt, A. GaiBer, J. Frech, M.Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, and W. Lang, “Decoupled Microgyros and the Design Principle DAVED,” MEMS’01, Interlaken, Switzerland, Jan. 2001, pp.170-173.
[61] E. Boser, "Electronics for micromachined inertial sensors," Transducers’ 97, Chicago IL, June 1997, pp. 1169 -1172.
[62] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachining Inertial Sensors,” Proceedings of The IEEE, vol. 86, pp.1640-1659, 1998.
[63] P. Greiff, B. Boxenhorn, T. King, and L. Niles, "Silicon Monolithic Micromachanical Gyroscope," Transducers’91, San Francisco, CA, June 1991, pp.966-968.
[64] K. Maenaka, T. Fujita, Y. Konishi, and M. Maeda, “Analysis of a Highly Sensitive Silicon Gyroscope with Cantilever Beam as Vibrating Mass,” Sensors and Actuators A, 54, pp.568—573, 1996.
[65] K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuxhi, and H. Ohwada, “A Micromachined Vibrating Gyroscope,” Sensors and Actuators A 50, pp.111—115, 1995.
[66] X. Li, M. Bao, H. Yang, S. Shen, and D. Lu, “A Micromachined Piezoresistive Angular Rate Sensor with a Composite Beam Structure,” Sensors and Actuators A 72, pp.217—223, 1999.
[67] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, "A Micromachined Comb-Drive Tuning Fork Rate Gyroscope," MEMS''93, Fort Lauderdale, FL, Feb. 1993, pp.143-148.
[68] R. Voss, K. Bauer, W. Ficker, T. Gleissner, W. Kupke, M. Rose, S. Sassen, J. Schalk, H. Seidel, and E. Stenzel, “Silicon Angular Rate Sensor for Automotive Applications with Piezoelectric Drive and Piezoresistive Read-out,” Tranducers''97, Chicago, IL, June 1997, pp. 879 —882.
[69] M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, and U. Bischof, “A Precision Yaw Rate Sensor in Silicon Micromachining,” Transducers’ 97, Chicago IL, June 1997, pp. 847-850.
[70] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, “Trident-type Tuning Fork Silicon Gyroscope by the Phase Difference Detection,” MEMS’2000, Miyazaki, Japan, Jan. 2000, pp.508—513.
[71] M. W. Putty and K. Najafi, “A Micromachined Vibrating Ring Gyroscope,” Solid-State Sensors and Actuators Workshop 1994, Hilton head, SC, June 1994, pp. 213-220.
[72] G. He and K. Najafi, “A Single-Crystal Silicon Vibrating Ring Gyroscope,” MEMS’02, Las Vegas, NV, Jan. 2002, pp.718-721.
[73] F. Ayazi, and K. Najafi, “Design and fabrication of high-performance polysilicon vibrating ring gyroscope,” MEMS’98, Heidelberg, Germany, January 1998, pp.621 —626.
[74] W. Geiger, B. Folkmer, U. Sobe, H. Sandmaier, and W. Lang, “New Designs of Micromachined Vibrating Rate Gyroscopes with Decoupled Oscillation Modes,” Sensors and Actuators A 66, pp.118—124, 1998.
[75] J. J. Choi, R. Toda, K. Minami, and M. Esashi, “Silicon Angular Resonance Gyroscope by Deep ICPRIE and XeF2 Gas Etching,” MEMS’98, Heidelberg, Germany, Jan. 1998, pp.322-327.
[76] K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, and F. Larmer, “A Surface Micromachined Silicon Using a Thick Polysilicon Layer,” MEMS’99, San Diego, CA, Jan 1999, pp.57-60.
[77] T. Fujita, K. Maenaka, and M. Maeda, “Design of Two-Dimensional Micromachined Gyroscope by Using Nickel Electroplating,” Sensors and Actuators A 66, pp.568—573, 1996.
[78] T. Juneau, A. P. Pisano, and J. H. Smith, “Dual Axis Operation of a Micromachined Rate Gyroscope,” Transducers’97, Chicago IL, June 1997, pp.883-886.
[79] S. An, Y. S. Oh, B. L. Lee, K. Y. Park, S. J. Kang, S. O. Choi, Y. I. Go, and C. M. Song, “Dual-Axis Microgyroscope with Closed-Loop Detection,” MEMS’98, Heidelberg, Germany, January 1998, pp.328-333.
[80] T. K. Tang, R.C. Gutierrez, J.Z. Wilcox, C. Stell, V. Vorperian, R. Calvet, W.J. Li, I. Chakraborty, and R. Bartman, “Silicon Bulk Micromachined Vibratory Gyroscope,” Solid-State Sensors and Actuators Workshop 1996, Hilton Head, SC, June 1996, pp.288-293.
[81] T. K. Tang, R. C. Gutierrez, C. Stell, V. Vorperian, G. A. Arakaki, J. T. Rice, W. J. Li, I. Chakraborty, K. Shcheglov, J. Z Wilcox, and W. J. Kaiser, “A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.500-505.
[82] W. A. Clark, R. T. Howe, and R. Horowitz, “Surface Micromachined Z-Axis Vibratory Rate Gyroscope,” Solid-State Sensors and Actuators Workshop 1996, Hilton Head, SC, June 1996, pp. 283-287.
[83] S.S. Back, Y.S. Oh, B.J. Ha, S.D. An, B.H. An, H. Song, and C.M. Song, “A symmetric Z-axis Gyroscope with A High Aspect Ratio Using Simple and New Process,” MEMS’99, San Diego, CA, Jan. 1999, pp. 612-617.
[84] Y. S. Hong, J. H. Lee, and S. H. Kim, “A Laterally Driven Symmetric Micro-resonator for gyroscopic applications,” Journal of Micromechanics and Microengineering, vol. 10, pp. 452-458, 2000.
[85] S. E. Alper and T. Akin, “A symmetric Surface Micromachined Gyroscope with Decoupled Oscillation Modes,” Transducers''01, Munich, Germany, June 2001, pp.456-459.
[86] H. -T. Lim, J. -W. Song, J. -G. Lee, and Y. -K. Kim, “A Few deg/hr Resolvable Low Noise Lateral Microgyroscope,” MEMS’02, Las Vegas, NV, Jan. 2002, pp.627-630.
[87] K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuchi, and K. Ohwada, “A Micromachined Vibrating Gyroscope,” Sensors and Actuators A 50, pp.111—115, 1995.
[88] Y. Mochida, M. Tamura, and K. Ohwada, “A Micromachined Vibrating Rate Gyroscope with Independent Beams for Drive and Detection Modes,” MEMS’99, San Diego, CA, Jan 1999, pp.618—623.
[89] Z. Xia and W. C. Tang, “Viscous air damping in laterally driven microresonators,” MEMS’94, Oiso, Japan, Jan. 1994, pp.199—204.
[90] W. C. Tang, M. G. Lim, and R. T. Howe, “Electrostatic Comb Drive Levitation and Control Method,” J. Microelectromech. Syst., vol.1, pp.170-178, 1992.
[91] R. J. Roark, Formulas for Stress and Strain, 4th ed., McGraw-Hill, New York, 1965.
[92] N. Barbour, E. Brown, J, Connelly, and J. Dowdle, "Micromachined Inertial Sensors For Vehicles," IEEE Conference on Intelligent Transportation System, 1997(ITSC ''97), pp.1058 —1063.
[93] K. Suzuki and R. Rumpf, “Fabrication of Narrow Gaps and Small Holes Using High Boron Diffusion”, Transducers’99, Sandi, Japan, June 1999, vol.2, pp 1094-1097.
[94] J. -R. Lai, Heavily Boron Doped Silicon Layer Etching and Stress for MEMS Application, Master Thesis, NTHU, Taiwan, ROC, 1999.
[95] L.-S. Fan, H. H. Ottesen, T.C. Reiley, and R.W.Wood, “Magnetic recording-head positioning at very high track densities using a microactuator-based, two-stage servo system,” IEEE Transactions on Industrial Electronics, vol. 42, June 1995, pp. 222—233.
[96] L. K. Baxter, Capacitive Sensors: Design and Applications, IEEE press, 1997.
[97] O. Schwarzelbach, G. Fakas, and W. Nienkirchen, “New Approach for Frequency Matching of Tuning Fork Gyroscopes by Using A Nonlinear Driving Concept,” Transducers''01, Munich, Germany, June 2001, pp. 464-467.
[98] W. Geiger, H. Sandmailer, and W. Lang, “A Mechanically Controlled Oscillator,” Transducers''99, Sendai, Japan, June 1999, pp.1406-1409.
[99] J. C. Lotters, W.Olthuis, P. H. Veltink, and P. Bergveld, “A Sensitive Differential Capacitance to Voltage Converter for Sensor Application,” IEEE Transactions on Instrumentation and Measurement, vol.48, 1999.
[100] G. B. Clayton, Operational Amplifiers, 2nd ed., Newnes-Butterworths, Boston, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top