|
[1] J. Hsieh and W. Fang, "Fabrication and Measurement of an Improved Micro Electrostatic Torsional Actuator," Transducers''99, Sendai, Japan, June 1999, pp.1376-1379. [2] M. -J. Zheng, Microstructure Fabrication Using Inductively Coupled Plasma Etching And Its Application, Master Thesis, NTHU, Taiwan, ROC, 2000. [3] Y. Gianchandani and K. Najafi, "A Bulk Silicon Dissolved Wafer Process for Microelectromechanical Devices," J. Microelectromech. Syst., vol.1, pp.77-85, 1992. [4] C. G. Keller and R. T. Howe, “HexSil Tweezers for Teleoperated Micro-Assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77. [5] F. Ayazi and K. Najafi, “High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology,” J. Microelectromech. Syst., vol. 9, pp. 288-294, 2000. [6] K.A. Shaw, Z.L. Chang, and N.C. MacDonald, “SCREAM I: A Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for MicroElectroMechanical Structures”, Sensors and Actuators A, vol.40, pp.210-213, 1994. [7] T. D. Kudrle, H. P. Neves, D. C. Rodger, and N.C. MacDonald, “A Microactuated Millimeter Wave Phase Shifter,” Transducers''99, Sendai, Japan, June 1999, pp.1276-1279. [8] X.Y. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “Fabrication of a Single Crystalline Silicon Capacitive Lateral Accelerometer Using Micromachining Based on Single Step Plasma Etching,” MEMS’95, Amsterdam, Netherlands, Feb. 1995, pp. 398-403. [9] W.H. Juan and S.W. Pang, “Released Si Microstructures Fabricated by Deep Etching and Shallow Diffusion,” J. Microelectromech. Syst., vol. 5, pp 18-23, 1996. [10] M. E. McNie, D. O. King, and M. C. L. Ward, “Micromachining in SOI,” Recent Advances in Micromachining Techniques (Digest No: 1997/081), IEE Colloquium, 20, Nov. 1997, pp. 5/1 -5/4. [11] J. T. Nee, Hybrid Surface-/Bulk-Micromachining Processes for Scanning Micro-Optical Components, Ph.D dissertation, U.C. Burkeley, 2001. [12] S. Lee, S.Park, and D. Cho, “The Surface/Bulk Micromachining (SBM) process: A New Method for Fabricating Released MEMS in Single Crystal Silicon,” J. Microelectromech. Syst., vol.8, pp.409-416, 1999. [13] E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T.A. Kovacs, “Silicon Fusion Bonding and Deep Reactive Ion Etching a New Technology for Microstructures,” Tansducers’95, Stockholm, Sweden, June 1995, pp.556-559. [14] S. -H. Kim, S.-H. Lee and Y.-K. Kim, “A High-Aspect-Ratio Comb Actuator Using UV-LIGA Surface Micromachining and (110) Silicon Bulk Micromachining,” Journal of Micromechanics and Microengineering, vol. 12, pp. 128-135, 2002. [15] H. Jansen, M. de Boer, and M. Elwenspoek, “Black silicon method VI: High aspect ratio trench etching for MEMS applications,” MEMS’96, San Diego, CA, Feb. 1996, pp. 250-257. [16] M. de Boer, H. Jansen, and M. Elwenspoek, “The Black Silicon Method V: A Study of The Fabricating of Movable Structures for Micro Electromechanical Systems,” Tansducers’95, Stockholm, Sweden, June 1995, pp. 565-568. [17] K. A. Shaw and N.C. MacDonald, “Integrating SCREAM Micromachined Devices with Integrated Circuits,” MEMS’96, San Diego, CA, Feb. 1996, pp. 44-48. [18] S. Lee, S. Park, J. Kim, S. Lee, and D. Cho, “Surface/Bulk Micromachined Single-crystaline-silicon micro-gyroscope,” J. Microelectromech. Syst., vol.9, pp.557—567, 2000. [19] V. Milanovic, M. Last, and K. S. J. Pister, “Torsional Micromirrors with Lateral Actuators,” Transducers''01, Munich, Germany, June 2001, pp.1298-1301. [20] Selvakumar, K. Najafi, W. H. Juan, and S. Pang, “Vertical comb array microactuators,” MEMS’95, San Diego, CA, Jan. 1995, pp.43-48. [21] J. A. Yeh, H. Jiang, and N. C. Tien, “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for an Electrostatic Torsional Actuator,” J. Microelectromech. Syst., vol.8, pp.456—465, 1999. [22] H. -M. Jeong, J. -J. Choi, K. Y. Kim, K. B. Lee, J. U. Jeon, and Y. E. Pak, “Milli-scale Mirror Actuator with Buck Micromachined Vertical Combs,” Transducers''99, Sendai, Japan, June 1999, pp.1006-1009. [23] R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A Flat High-Frequency Scanning Micromirror,” Solid-State Sensors and Actuators Workshop 2000, Hilton head, SC, June 2000, pp. 6-9. [24] J. Kim, S. Park, and D. Cho, “A Novel Electrostatic Vertical Actuator Fabricated in one Homogeneous Silicon Wafer Using Extended SBM Technology,” Transducers’01, Munich, Germany, June 2001, vol.1, pp.756-759. [25] H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, pp 715-722, 2000. [26] K.E. Peterson, “Silicon as a Mechanical Material,” Proceedings of the IEEE, vol. 70, pp.420-457, 1982. [27] http://www.jahm.com/:Temperature Dependent Elastic & Thermal Properties Database. [28] M. Madou, Fundamentals of Microfabrication, CRC press, New York, 1997. [29] R.E. Oosterbroek, J.W. Berenschot, H.V. Jansen, A.J. Nijdam, G. Pandraud, A. van den Berg, and M.C. Elwenspoek, “Etching Methodologies in <111>-oriented silicon wafers,” J. Microelectromech. Syst., vol.9, pp.390-398, 2000. [30] J. Kim, D. Cho, and R.S. Muller, “Why is (111) Si a batter mechanical material for MEMS?” Transducers’01, Munich, Germany, June 2001, vol.1, pp.662-665. [31] B.C.S. Chou, C.-N. Chen, and J.-S. Shie, “Micromaching on (111)-oriented silicon,” Sensors and Actuator A, vol. 75, pp. 271-277, 1999. [32] J. G. Fleming, “Combining the best of bulk and surface micromichining using Si {111} substrate,” in Proc. of SPIE, vol. 3511, Santa Clara, CA, Sep.1998, pp.162-168. [33] H. -H. Hu, H.-Y. Lin, B.C.-S. Chou, and W. Fang, "Characteristics of the Micromachined Beams on the (111) Substrate," Sensors and Actuators A, vol. 93, pp. 258-265, 2001. [34] S. C. Lee, S. Park, and D. Cho, “Honeycomb-Shaped Deep-Trench Oxide Posts Combined with the SBM Technology for Micromachining Single-Crystal Silicon without using SOI,” Transducers''01, Munich, Germany, June 2001, pp.1124-1127. [35] S. Lee, B.-L Lee, K. D. Jung, J. H. Choi, T.-R. Chung, and Y. C. Cho, “Extension of Surface/Buck Micromachining: One-Mask Fabrication Technology Enabling the Integration of 6-DOF Inertial Sensors on A Single Wafer,” Transducers''01, Munich, Germany, June 2001, pp.1136-1139. [36] S. M. Sze, Semiconductor Devices-Physics and Technology, John Wiley & Sons, New York, 1985. [37] J. Kiihamaki, H. Kattelus, and S. Franssila, “Depth and Profile Control in Plasma Etched MEMS Structures,” Transducers''99, Sendai, Japan, June 1999, pp. 858-861. [38] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, vol. 6, pp. 320-329, 1996. [39] P. Jaecklin, C. Linder, and N. F. de Rooij, “Line-addressable torsional micromirrors for light modulator arrays,” Sensors and Actuators A, vol. 41-42, pp 324-329, 1994. [40] J. A. Yeh, C. -Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric combdrive,” J. Microelectromech. Syst., vol.9, pp. 126-135, 2000. [41] J. Hsieh, C. C. Chu, J. M. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Applications,” IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August 2002, Paper WP 39. [42] J. M. Tsai, C. C. Chu, J. Hsieh, and W. Fang, “A Large Out-of-plane Motion Machanism for Optical Application,” IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August 2002, Paper WP 2. [43] M. Hoffmann and E. Voges, “Bulk silicon micromachining for MEMS in optical communication systems,” Journal of Micromechanics and Microengineering, vol.12, pp. 349-360, 2002. [44] A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, “TMAH/IPA Abisotropic Etching Characteristics,” Sensors and Actuators A, Vol. 37-38, pp.737-743, 1993. [45] I. Zubel and M. Kramkowska, “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions” Sensors and Actuators A, Vol. 93, pp.138-147, 2001. [46] R. Legtenberg, J. Gilbert, S. D. Senturia, and M. Elwenspoek, “Electrostatic Curved Electrode Actuators,” J. Microelectromech. Syst., vol. 6, pp. 257-265, 1997. [47] C.W. Dyck, J. J. Allen and R. J. Huber, “Parallel-Plate Electrostatic Dual-Mass Oscillator”, Proceeding of the SPIE, vol. 3876, pp. 198-209. [48] T. Usuda, “Operational Characteristics of Electrostatically Driven Torsional Resonator with Two Degrees of Freedom,” Sensors and Actuators A 64, pp. 255-257, 1998. [49] X. Li, R. Lin, and K. W. Leow, “Performance-enhanced Micro-machined Resonant Systems with Two-degrees-of-freedom Resonators,” Journal of Micromechanics and Microengineering, vol. 10, pp. 534-539, 2000. [50] X. Li, T. Ono, R. Lin, and M. Esashi, “Much Enlarged Resonant Amplitude of Micro-resonator with Two-degree-of-freedom (2-DOF) Mechanical Coupling Scheme,” Transducers''01, Munich, Germany, June 2001, pp.1106-1109. [51] H.-Y. Lin, H.-H. Hu, W. Fang, and R. S. Huang, “High Resolution Micromachined Scanner Mirror,” Transducers''01, Munich, Germany, June 2001, pp.1310-1313. [52] S. Rao, Mechanical Vibrations, 3rd ed., Addison-Wesley, 1995. [53] Z. Kadar, W. Kindt, A. Bossche, and J. Mollinger, “Quality factor of torsional resonators in the low-pressure region,” Sensors and Actuators A 53, pp.299-303, 1996. [54] http://www.vectronix.com.tw/page2.htm:Vectronix System Inc, Taiwan. [55] J. Mohr, M. Kohl, and W. Menz, "Micro Optical Switching by Electrostatic Linear Actuator with Large Displacements," Transducers''93, Yokohama, Japan, June 1993, pp.120-123. [56] M. A. Rosa, S. Dimitrijev, and H. B. Harrison, “Enhanced Electrostatic Force Generation Capability of Angled Comb Finger Design Used in Electrostatic Comb-drive Actuators,” Electronics Latters, no.18, pp.1787-1788, 1998. [57] G. K. Fedder and R. T. Howe, “Multimode Digital Control of a Suspended Polysilicon Microstructure,” J. Microelectromech. Syst., vol.5, pp.283-297, 1996. [58] Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control, 2nd Ed., New York, NY: Springer-Verlag, 1998. [59] J. Soderkvist, "Micromachined gyroscope", Sensors and Actuators A, 43, pp.65-71, 1994. [60] W. Geiger, W.U.Butt, A. GaiBer, J. Frech, M.Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, and W. Lang, “Decoupled Microgyros and the Design Principle DAVED,” MEMS’01, Interlaken, Switzerland, Jan. 2001, pp.170-173. [61] E. Boser, "Electronics for micromachined inertial sensors," Transducers’ 97, Chicago IL, June 1997, pp. 1169 -1172. [62] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachining Inertial Sensors,” Proceedings of The IEEE, vol. 86, pp.1640-1659, 1998. [63] P. Greiff, B. Boxenhorn, T. King, and L. Niles, "Silicon Monolithic Micromachanical Gyroscope," Transducers’91, San Francisco, CA, June 1991, pp.966-968. [64] K. Maenaka, T. Fujita, Y. Konishi, and M. Maeda, “Analysis of a Highly Sensitive Silicon Gyroscope with Cantilever Beam as Vibrating Mass,” Sensors and Actuators A, 54, pp.568—573, 1996. [65] K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuxhi, and H. Ohwada, “A Micromachined Vibrating Gyroscope,” Sensors and Actuators A 50, pp.111—115, 1995. [66] X. Li, M. Bao, H. Yang, S. Shen, and D. Lu, “A Micromachined Piezoresistive Angular Rate Sensor with a Composite Beam Structure,” Sensors and Actuators A 72, pp.217—223, 1999. [67] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, "A Micromachined Comb-Drive Tuning Fork Rate Gyroscope," MEMS''93, Fort Lauderdale, FL, Feb. 1993, pp.143-148. [68] R. Voss, K. Bauer, W. Ficker, T. Gleissner, W. Kupke, M. Rose, S. Sassen, J. Schalk, H. Seidel, and E. Stenzel, “Silicon Angular Rate Sensor for Automotive Applications with Piezoelectric Drive and Piezoresistive Read-out,” Tranducers''97, Chicago, IL, June 1997, pp. 879 —882. [69] M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, and U. Bischof, “A Precision Yaw Rate Sensor in Silicon Micromachining,” Transducers’ 97, Chicago IL, June 1997, pp. 847-850. [70] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, “Trident-type Tuning Fork Silicon Gyroscope by the Phase Difference Detection,” MEMS’2000, Miyazaki, Japan, Jan. 2000, pp.508—513. [71] M. W. Putty and K. Najafi, “A Micromachined Vibrating Ring Gyroscope,” Solid-State Sensors and Actuators Workshop 1994, Hilton head, SC, June 1994, pp. 213-220. [72] G. He and K. Najafi, “A Single-Crystal Silicon Vibrating Ring Gyroscope,” MEMS’02, Las Vegas, NV, Jan. 2002, pp.718-721. [73] F. Ayazi, and K. Najafi, “Design and fabrication of high-performance polysilicon vibrating ring gyroscope,” MEMS’98, Heidelberg, Germany, January 1998, pp.621 —626. [74] W. Geiger, B. Folkmer, U. Sobe, H. Sandmaier, and W. Lang, “New Designs of Micromachined Vibrating Rate Gyroscopes with Decoupled Oscillation Modes,” Sensors and Actuators A 66, pp.118—124, 1998. [75] J. J. Choi, R. Toda, K. Minami, and M. Esashi, “Silicon Angular Resonance Gyroscope by Deep ICPRIE and XeF2 Gas Etching,” MEMS’98, Heidelberg, Germany, Jan. 1998, pp.322-327. [76] K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, and F. Larmer, “A Surface Micromachined Silicon Using a Thick Polysilicon Layer,” MEMS’99, San Diego, CA, Jan 1999, pp.57-60. [77] T. Fujita, K. Maenaka, and M. Maeda, “Design of Two-Dimensional Micromachined Gyroscope by Using Nickel Electroplating,” Sensors and Actuators A 66, pp.568—573, 1996. [78] T. Juneau, A. P. Pisano, and J. H. Smith, “Dual Axis Operation of a Micromachined Rate Gyroscope,” Transducers’97, Chicago IL, June 1997, pp.883-886. [79] S. An, Y. S. Oh, B. L. Lee, K. Y. Park, S. J. Kang, S. O. Choi, Y. I. Go, and C. M. Song, “Dual-Axis Microgyroscope with Closed-Loop Detection,” MEMS’98, Heidelberg, Germany, January 1998, pp.328-333. [80] T. K. Tang, R.C. Gutierrez, J.Z. Wilcox, C. Stell, V. Vorperian, R. Calvet, W.J. Li, I. Chakraborty, and R. Bartman, “Silicon Bulk Micromachined Vibratory Gyroscope,” Solid-State Sensors and Actuators Workshop 1996, Hilton Head, SC, June 1996, pp.288-293. [81] T. K. Tang, R. C. Gutierrez, C. Stell, V. Vorperian, G. A. Arakaki, J. T. Rice, W. J. Li, I. Chakraborty, K. Shcheglov, J. Z Wilcox, and W. J. Kaiser, “A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.500-505. [82] W. A. Clark, R. T. Howe, and R. Horowitz, “Surface Micromachined Z-Axis Vibratory Rate Gyroscope,” Solid-State Sensors and Actuators Workshop 1996, Hilton Head, SC, June 1996, pp. 283-287. [83] S.S. Back, Y.S. Oh, B.J. Ha, S.D. An, B.H. An, H. Song, and C.M. Song, “A symmetric Z-axis Gyroscope with A High Aspect Ratio Using Simple and New Process,” MEMS’99, San Diego, CA, Jan. 1999, pp. 612-617. [84] Y. S. Hong, J. H. Lee, and S. H. Kim, “A Laterally Driven Symmetric Micro-resonator for gyroscopic applications,” Journal of Micromechanics and Microengineering, vol. 10, pp. 452-458, 2000. [85] S. E. Alper and T. Akin, “A symmetric Surface Micromachined Gyroscope with Decoupled Oscillation Modes,” Transducers''01, Munich, Germany, June 2001, pp.456-459. [86] H. -T. Lim, J. -W. Song, J. -G. Lee, and Y. -K. Kim, “A Few deg/hr Resolvable Low Noise Lateral Microgyroscope,” MEMS’02, Las Vegas, NV, Jan. 2002, pp.627-630. [87] K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuchi, and K. Ohwada, “A Micromachined Vibrating Gyroscope,” Sensors and Actuators A 50, pp.111—115, 1995. [88] Y. Mochida, M. Tamura, and K. Ohwada, “A Micromachined Vibrating Rate Gyroscope with Independent Beams for Drive and Detection Modes,” MEMS’99, San Diego, CA, Jan 1999, pp.618—623. [89] Z. Xia and W. C. Tang, “Viscous air damping in laterally driven microresonators,” MEMS’94, Oiso, Japan, Jan. 1994, pp.199—204. [90] W. C. Tang, M. G. Lim, and R. T. Howe, “Electrostatic Comb Drive Levitation and Control Method,” J. Microelectromech. Syst., vol.1, pp.170-178, 1992. [91] R. J. Roark, Formulas for Stress and Strain, 4th ed., McGraw-Hill, New York, 1965. [92] N. Barbour, E. Brown, J, Connelly, and J. Dowdle, "Micromachined Inertial Sensors For Vehicles," IEEE Conference on Intelligent Transportation System, 1997(ITSC ''97), pp.1058 —1063. [93] K. Suzuki and R. Rumpf, “Fabrication of Narrow Gaps and Small Holes Using High Boron Diffusion”, Transducers’99, Sandi, Japan, June 1999, vol.2, pp 1094-1097. [94] J. -R. Lai, Heavily Boron Doped Silicon Layer Etching and Stress for MEMS Application, Master Thesis, NTHU, Taiwan, ROC, 1999. [95] L.-S. Fan, H. H. Ottesen, T.C. Reiley, and R.W.Wood, “Magnetic recording-head positioning at very high track densities using a microactuator-based, two-stage servo system,” IEEE Transactions on Industrial Electronics, vol. 42, June 1995, pp. 222—233. [96] L. K. Baxter, Capacitive Sensors: Design and Applications, IEEE press, 1997. [97] O. Schwarzelbach, G. Fakas, and W. Nienkirchen, “New Approach for Frequency Matching of Tuning Fork Gyroscopes by Using A Nonlinear Driving Concept,” Transducers''01, Munich, Germany, June 2001, pp. 464-467. [98] W. Geiger, H. Sandmailer, and W. Lang, “A Mechanically Controlled Oscillator,” Transducers''99, Sendai, Japan, June 1999, pp.1406-1409. [99] J. C. Lotters, W.Olthuis, P. H. Veltink, and P. Bergveld, “A Sensitive Differential Capacitance to Voltage Converter for Sensor Application,” IEEE Transactions on Instrumentation and Measurement, vol.48, 1999. [100] G. B. Clayton, Operational Amplifiers, 2nd ed., Newnes-Butterworths, Boston, 1979.
|