跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/17 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐永源
研究生(外文):Hsu, Yung-Yuan
論文名稱:五軸CNC工具機之精度量測及幾何誤差補償
論文名稱(外文):ACCURACY TEST AND GEOMETRIC ERRORS COMPENSATION
指導教授:雷衛台
指導教授(外文):Lei, Wei-Tai
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:116
中文關鍵詞:五軸工具機誤差模型探頭-球桿最小平方估算法幾何誤差誤差補償
外文關鍵詞:Five-axis machine toolError modelingProbe-ballLeast square estimationPositioning accuracyGeometric errorsError compensation
相關次數:
  • 被引用被引用:21
  • 點閱點閱:2022
  • 評分評分:
  • 下載下載:616
  • 收藏至我的研究室書目清單書目收藏:2
本論文的研究目的為改善五軸工具機之幾何精度。五軸工具機雖已廣範應用於工業界,但其相關之研究卻相當匱乏,其主因是五軸工具機同時具有線性軸及轉動軸,其機構間之交互影響造成複雜之誤差模型及增加補償機制實現之困難度。同時,此一複雜之機構鏈亦造成總成誤差之量測幾乎不可能達成。
因此,本論文中,發明一命名為探頭-球桿(Probe-ball)之誤差量測裝置,此裝置可直接量測五軸工具機之三維定位誤差,為說明其量測結果,進而推導其數學模型。此外,為有效估算幾何誤差量,將量得之誤差帶入誤差模型中,則得到只具有不能量測且未知之誤差項之簡化誤差模型,再藉由探頭-球桿量得之數據及最小平方估算法得到未知之誤差項。此時,完整之五軸誤差模型建立完成。最後,進行五軸工具機即時誤差補償。量測結果顯示,此一補償機制大大改善五軸工具機之精度。
This paper is devoted to enhance the accuracy of five-axis machine tools. Although five-axis CNC machine tools are widely used in mold and die industry, relevant works in the field of the enhancement of accuracy of five-axis machine tools are sparse. The reason is on one hand the interaction of linear and rotary axes complicates the relationship between the sources of errors and the final errors at the tooltip and makes it difficult to find a suitable compensation method. On the other hand, the increasing kinematical complexity makes it very difficult to measure the overall positioning errors.
In this paper, a new measurement device, the probe-ball, is presented which can be used to measure directly the overall position errors of five-axis machine tools. To explain the nature of the probe-ball error measurement, a theoretical model is derived with the HTM method. After setting all measured errors in the error model, a reduced error model is defined which describes the influence of each unknown and not measurable link error on the overall position errors. The unknown link errors can be estimated based on the probe-ball measured data using the least square estimation method. Based on the fully known error model, a new error compensation strategy using linear function is proposed. This compensation method is simple and implemented in real-time. The test results show the positioning accuracy of the five-axis machine tool can be improved dramatically.
CONTENTS
ABSTRACT I
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
2.1 Error source 3
2.2 Geometric error elimination 5
2.3 Error compensation technique 7
2.4 Five-axis machine tools 10
2.5 Outline of this thesis 12
3. PROBE-BALL MEASUREMENT DEVICE 13
3.1 Probe-ball measurement device 13
3.1.1 The calibration of Central ball position 15
3.1.2 Probe reading initializing 15
3.1.3 The calibration of gain factor 16
3.2 Design feature 19
3.3 Test path 21
3.3.1 Path A 22
3.3.2 Path C 24
3.3.3 Path F 26
3.3.4 Path S 29
3.4 Experimental results 32
4. ERROR MODELING AND KINEMATIC TRANSFORMATION 37
4.1 Homogeneous transformation matrix (HTM) 37
4.2 Error model of probe-ball measurement 42
4.3 Error modeling in the workpiece coordinate frame 59
4.4 Kinematic transformation 63
5. IDENTIFICATION OF GEOMETRIC ERRORS 67
5.1 Basic theory 68
5.2 Reduced error model for estimation 71
5.3 Error measurement 76
5.4 Estimation procedure and results 87
6. REAL-TIME ERROR COMPENSATION 96
6.1 Compensation concept 96
6.2 Simplified error model in the workpiece coordinate frame 99
6.3 Compensation algorithm 102
6.4 Experimental results 105
7. CONCLUSION 111
REFERENCE 115
Reference
[1] J. B. Bryan, A simple method for testing measuring machines and machine tools, part I: Principle and applications, Precision Engineering 4 (2) (1982) 61-69.
[2] W. Knapp, Test of three dimensional uncertainty of machine tools and measuring machines and its relation to machine errors, Annals of the CIRP 32 (1) (1983) 459-464.
[3] J. S. Chen, Real-time compensation of time-variant volumetric error on a machining center, Ph. D. Thesis, Michigan University, 1991.
[4] M. H. Attia and L. Kops, Thermometric design considerations for temperature monitoring in machine tools and CMM structures, International Journal of Advanced Manufacturing Technology 8 (1993) 311-319.
[5] J. S. Chen and C. C. Ling, Improving the machine accuracy through machine tool metrology and error correction, International Journal of Advanced Manufacturing Technology 11 (3) (1996) 198-205.
[6] J. Mou, A method of using neural networks and inverse kinematics for machine tools error estimation and correction, Journal of Manufacturing Science and Engineering, Transactions of the ASME, 119 (1997) 247-254.
[7] A. H. Slocum, Precision Machine Design, Prentice-Hall, Englewood Cliffs, 1992.
[8] V. S. B. Kiridena and P. M. Ferreira, Kinematic modelling of quasistatic errors of three-axis machining centers, International Journal of Machine Tools Manufacturing 34 (1) (1994) 85-100.
[9] P. M. Ferreira and C. R. Liu, A contribution to the analysis and compensation of the geometric error of a machining center, Annals of the CIRP 35 (1986) 259-262.
[10] P. M. Ferreira and C. R. Liu, A method for estimating and compensating quasistatic errors of machine tools, Journal of Engineering for Industry 115 (1993) 149-157.
[11] J. Ni, CNC machine accuracy enhancement through real-time error compensation, Journal of Manufacturing Science and Engineering 119 (1997) 717-725.
[12] K. Lau, Q. Ma, X. Chu, Y. Liu and S. Olson, An advanced 6-degree-of-freedom laser system for quick CNC machine and CMM error mapping and compensation, Automated Precision, Inc. Gaithersburg, MD 20879 U.S.A.
[13] R. Schulstchik, The components of volumetric accuracy, Annals of CIRP 25 (1) (1997) 223-227.
[14] V. Kiridena and P. M. Ferreira, Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine Tools, International Journal of Machine tools & Manufacture 33 (3) (1993) 417-437.
[15] J. Mou., M. A. Donmez and S. Centikunt, Adaptive error correction method using feature-based analysis techniques for machine performance improvement Part I and Part II, ASME, Journal of engineering for industry 114 (1995) 362-369.
[16] Y. Kakino, Y. Ihara, and Y. Nakatsu, The measurement of motion errors of NC machine tools and diagnosis of their origins by using telescoping magnetic ball bar method, Annals of the CIRP 36 (1987) 337-380.
[17] J. C. Ziegert and C. D. Mine, The laser ball bar: a new instrument for machine tool metrology, Precision engineering 16 (4) (1994) 259-267.
[18] V. S. B. Kiridena, P. M. Ferreira, Parameter estimation and model verification of first order quasistatic error model for three-axis machining centers, International Journal of Machine Tools & Manufacture 34 (1) (1994) 101-125.
[19] H. J. Pahk, Y. S. Kim and J. H. Moon, A new technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model, International Journal of Machine Tools & Manufacture 37 (11) (1997) 1583-1596.
[20] A. Gelb, Applied Optimal Estimation, MIT Press, 1974.
[21] A. S. Koliskor, Compensating for automatic cycle machining error, Machines and Tooling 41 (5) (1971).
[22] A. K. Srivastava, S. C. Veldhuis and M. A. Elbestawit, Modelling geometric and thermal errors in a five-axis CNC machine tool, International Journal of Machine Tools & Manufacture 35 (9) (1995) 1321-1337.
[23] S. Sakamoto, I. Inasaki, H. Tsukamoto and T. Ichikizaki, Identification of alignment errors in five-axis machining centers using telescoping ball bar, Transactions of the Japan Society of Mechanical Engineers Part C 63 (605) (1997) 262-267.
[24] Z. A. Ahmad, Y. Kakino, Y. Ihara and S. Lin, Analysis of the motion accuracy of 5-axis controlled machining centers using DBB method, International Conference on Precision Engineering (1997) 55-60.
[25] S. C. Veldhuis and M. A. Elbestawi, A strategy for the compensation of errors in five-axis machining, Annals of the CIRP, 44 (1) (1995) 373-377.
[26] 王智益, 五軸銑床幾何誤差之分析、量測與補償, 清華大學動力機械系碩士論文 民國85年.
[27] B. W. Mooring, Z. Roth and M. R. Driels, Fundamentals of Manipulator Calibration, John Wiley & Sons, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top