跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林弘毅
研究生(外文):Hung-Yi Lin
論文名稱:複合式微矽光學平台之研究與應用
論文名稱(外文):The Hybrid Micromachined Silicon-Optical-Bench and Its Applications
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:179
中文關鍵詞:光學微機電系統面型微矽加工MOSBE複合式製程微矽光學平台光學微機械微扭轉面鏡微機械槓桿肋強化結構
外文關鍵詞:Optical MEMSSurface MicromachiningMOSBE hybrid micromachiningSilicon Micro-Optical-BenchOptical micromachinemicro torional mirrormicromachined leverrib-reinforced structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
光學微機電系統(Optical MEMS)以微結構與微機械元件能達成多樣性的光學功能,其應用包含了簡單的條碼讀取機到繁複的光通訊系統,而伴隨者微矽加工技術的持續演化而產生新的發展與機會。
1970年代發展的體型微矽加工,利用單晶矽的蝕刻特性能製造出精準的定位微結構,而矽也是很好的機械結構使具備致動功能的微機械,能夠變化出更豐富的光學應用。1990年代發展的面型微矽加工,利用組裝的特性能架構出立體的微結構,運用此一特性能夠創造出結構更為精細而功能更為豐富的微機械,然而因結構太薄所衍生的動、靜態形變為其缺點。因應此一缺失,利用矽深蝕刻技術(DRIE)在90年代中期被發展出來,創造出高深寬比的單晶厚結構,然而單一的加工深度也使其應用受到限制。
本文以現有的薄膜面型工藝技術為基礎,並整合與高深寬比矽蝕刻及異向性濕蝕刻而發展出一新穎的多重加工深度製程(MOSBE) 。此一複合式製程單石化地完成三種不同等級的加工深度,使微結構不但具備薄膜製程的撓性,而利用肋強化技術也可使薄膜微結構具有高剛性及輕量化等特性,使微機械具備更好的動態特性,而由於此一複合式製程使用薄膜結構也使其具備面型元件的組裝特性。
本文闡述精準為微矽加工於光學應用上的必要特性,包含靜態結構定位精準,及動態結構的運動精準。因此本文討論了面型元件的組裝特性及其精度,並驗證面型組裝技術可架構出精準的靜態光學平台。而本文利用複合式製程演示了光學微機械所需要的致動器、槓桿傳動機構與被動件,以作為動態的光學平台,並提出一新穎的高頻微扭轉面鏡作為此一製程平台的驗證。而本文提出之複合式製程有潛力達成光學應用所需之動、靜態的精準特性,而作為一通用之製程平台。
Optical MEMS utilized by microstructure and micromachine to construct various optical functions, the applications from simple barcode reader to sophisticated optical network, the development of micromachining open up the new applications and opportunities.
From 1970, the development of Bulk micromachining shows the characteristic of the precision etching in single crystal silicon could be used for optical alignment. And silicon also as a wonderful mechanical material, therefore the actuated silicon machine could function as light manipulator. The Surface micromachining developed from 1990, could implement real 3D structure by folded-up assembly. The refining micromachine utilized by surface micromachining demonstrate various applications, however the static and dynamic deformation of those thinness structure limits the optical performance. Therefore, the DRIE machining is developed for high aspect ratio structure, but those uni-thickness structures also have the limitation from the perspective of motion.
This thesis proposed a novel micromachining process, based on existing thin film technology and integrate DRIE and Bulk wet release to realize a multi-depth micromachining process. The proposed hybrid process provides three level machining depths monolithically; therefore the thin film structure has the flexure property intrinsically, and also could be a high stiffness/weight ratio structure utilized by proposed rib-reinforced technology for better dynamic characteristic. This thin film micromaching also could inherit the assembly technology of surface micromachining.
This thesis expounds the precision is the essential of micromachining when apply to optical application, both the position accuracy of static structure and motion accuracy of dynamic structure. Therefore the assembly technology and its accuracy were discussed, and conclude this technology is suitable for quasi-static precision optical bench. Further, for dynamic optical bench, the essential elements include actuator, transmitting mechanism and passive component were fabricated by proposed hybrid process, and a novel high frequency scanning mirror as a vehicle to demonstrate the proposed dynamic optical bench. In concludes, an optical bench utilized by proposed hybrid process could potentially meet the requirement both static and dynamic applications.
目 錄
中文摘要………………………………………………………………………I
Abstract………………………………………………………………………II
誌謝…………………………………………………………………………III
序言……………………………………………………………………………VI
目錄……………………………………………………………………………X
圖目錄…………………………………………………………………………XV
表目錄…………………………………………………………………………XI
第一章: 光學微機械簡介……………………………………………………1
1.1電晶體與微機械………………………………………………………….1
1.1.1 電晶體是因應通訊需要而發展的……………………………………1
1.1.2 電晶體引發了數位革命………………………………………………2
1.1.3 電晶體成功的要素……………………………………………………2
1.1.4 通訊頻寬的挑戰………………………………………………………3
1.2光學微機械的物理意義……………………………………………………3
1.2.1 光調制的方法…………………………………………………………3
1.2.2光學微機械的物理特徵…………………………………………………5
1.3 微機械的可靠度…………………………………………………………6
1.3.1破壞模式………………………………………………………………6
1.3.2 DMD的實驗………………………………………………………………7
1.4 光學微機械發展沿革………….………………………….…………….8
1.4.1 體型微矽加工……….………………………….…………….……9
1.4.2 面型微矽加工…….……………………………………….………...9
1.4.3光學微機械的技術平台.…………………………………..….……11
1.5 研究動機與研究方針………………………………………..….…..14
第二章 面型微矽靜態光學平台……………………..…………………...28
2.1 雙層複晶矽結構層面型微矽加工製程簡介..…………………...29
2.1.1 製造流程………………………………………………………..30
2.1.2 關鍵技術………………………………………………………..31
2.2 雙軸向扭轉微面鏡應用實例……..………………………………..32
2.2.1 多層結構的機械性交聯……………………………………….33
2.2.2 自組裝方式的討論………………………………….………....35
2.2.3 元件的製造結果與討論…………………………………….....38
2.3 垂直面鏡陣列應用實例………………..………………………….…39
2.3.1面鏡角度公差需求…………………………………..……..…..40
2.3.2製造與組裝精度的考量…………………………………....…..41
2.3.3應力自組裝垂直面鏡設計………………………………..……42
2.4 面型微加工技術的特性及應用範疇..…………………………….….44
第三章: 肋強化薄膜微結構……..……………………………….….66
3.1薄膜微機械結構的侷限性……..………………………….…...66
3.2肋強化微懸臂樑.………..………………..……………….………….68
3.2.1 彎曲剛性分析……..……………………………………..…...69
3.2.2 實驗與結果………………………………………………......70
3.2.3 結論與討論…………………………………………..…..…..73
3.3 肋強化環微面鏡…………………………………..…..…………74
3.3.1 微面鏡設計考量與分析………………………………..…...74
3.3.2 實驗與結果…………………………………………..….…..78
3.3.3結論與討論……………………………………………….….81
第四章: 微機械槓桿及其致動應用 ……..…………………...……….109
4.1 面型微致動器簡介……………………….….…………..…….109
4.1.1致動器的運動方向…………………………………….…..109
4.1.2靜電致動機制………………………………………….…..110
4.2 微機械槓桿……………………………..……….……..…..…..111
4.2.1槓桿傳動機構的設計考量……………………………..….112
4.2.2肋強化槓桿臂…………………………………………..….113
4.2.3 扭轉軸的應變與形變量分析…………………………......113
4.2.4 槓桿機構的負載測試………………………………….….116
4.2.5結論與討論………………………………………………...117
4.3 靜電平板槓桿放大致動器(EDLA)…..………………..……..118
4.3.1 EDLA的出力與位移分析……………………………….119
4.3.2 EDLA DC位移量測………………………………….…..120
4.3.3 EDLA AC特性量測……………………………………...123
4.3.4結論與討論……………………………………………….124
第五章: 多重加工深度微矽動態光學平台及其應用…………………..142
5.1複合式製程……………………….….………….………....…143
5.1.1多重加工深度……………………..………………………………144
5.1.2 MOSBE與面型微矽加工的比較……………………….….…..144
5.1.3動態微矽光學平台……………………………………………......146
5.2槓桿致動微扭轉面鏡…………….………………..…………147
5.2.1掃描微扭轉面鏡之發展………………………………....147
5.2.2設計及分析………………………………………………148
5.2.3實驗與結果………………………………………………150
5.2.4結論………………………………………………………152
第六章: 研究結果與未來工作………………………………….....165
參考資料………………………….…………………………….….168
發表著作 ……………………….………………………………….178
圖 目 錄
圖1-1 以手工組裝的第一顆電晶體………………………………………16
圖1-2 德州儀器公司首先以平面工藝技術製造積體電路.………….….17
圖1-3 利用半導體所產生的光源通常具有窄頻寬或波長相依的特性,如所 示之半導體雷射, 及(b) 摻鉺光纖放大器的波長響應圖……..18
圖1-4 幾種晶體光學的調變方法。(a) 電光調變, 及(b) 液晶調變,及(c) 聲光調變…………………………………………………….…….19
圖1-5 幾種常作為鏡面反射層的金屬其反射率-波長關係圖………….…20
圖1-6 自由空間之光學調制方法…………………………………………21
圖1-7 K. E. Petersen提出以體型微矽加工所製造的光閥與微扭轉面鏡….22
圖1-8 複晶矽面型微矽加工於光學應用的發展沿革………….…….……23
圖1-9 以表面微加工製程與微鉸鏈技術製造立體微結構。(a) 兩層Poly-Si,兩層PSG的表面微加工製程,(b) 以該製程製造的直立的微費斯涅透鏡…………………………………………………………….…24
圖1-10 以自由空間光學平台展示的微型光學讀取頭,整合了光發射、感測及微光學鏡組成為單晶片光學系統……………………………....25
圖1-11 以通用致動器配合上不同的被動件, 如微扭轉面鏡、光柵等發展出的微機電元件…………………………………………………..26
圖1-12 以微鉸鏈技術折立組合之扭轉微面鏡 .……………………….27
圖2-1 本文所示用之面型微細加工製造流程示意圖……………………..46
圖2-1(續) 本文所示用之面型微細加工製造流程示意圖………..……… 47
圖2-2 P1+P2 疊層平板之表面輪廓量測圖, 其X方向的曲率半徑為18cm, Y方向的曲率半徑為17cm ………..……………....…………….... 48
圖2-3雙軸向扭轉微面鏡為一平衡環結構, (a)結構上視圖, (b)結構側視圖………………………………………….…………………….. 49
圖2-4 以雙軸向扭轉微面鏡所架構的高阜數三維光開關示意圖……….. 50
圖2-5薄膜疊層應用於 (a) 積體電路中的多層導引連線, 及(b)面型微矽加工所演式的立體結構元件(麥克風)……………………………………….51
圖2-6 Lucent 所發表的雙軸向扭轉微面鏡………….………………….52
圖 2-7 微絞鏈與其間隙之關係圖,(a) 雙夾緊邊界的軸承具有較大的間隙,(b) 懸臂樑型的軸承具有較小的間隙…………………….……….53
圖2-8 Lucent微面鏡所使用具上下限軸承的扭轉彈簧,(a) SEM照片,(b)結構佈局示意圖.…………………………………………….……...54
圖2-9 單純以應力抬升的方式其旋轉平板的角度受限於幾何關係而無法達到90 度, (a) 上視圖,(b) 側視圖 …………………………………55
圖2-10應力抬升臂與兩層結構互補性的V形卡榫能控制 平板的角度達90 度,(a) 上視圖,(b) 側視圖 ………………………………………….56
圖2-11利用V形卡榫控制面鏡外框結構的抬升高度,(a) SEM照片,(b) 結構示意圖…………….…………………………………………….57
圖2-12應力抬升臂結構示意圖,(a) 犧牲層移除前,(b)犧牲層移除後....58
圖2-13 應力抬升臂之,(a) SEM照片,(b) 輪廓量測圖 ………….….59
圖2-14 雙軸向扭轉微面鏡之製造結果,(a) 4×4 之SEM照片,(b) 單一微面鏡之SEM照片………………………………………………….60
圖2-15 二維光開關的架構之示意圖……………………………………..61
圖2-16 利用撓性軸代替微絞鏈作為樞紐的高精度垂直微面鏡設計,(a) 上視圖,(b) 側視圖…………………………………………….…..62
圖2-17本文所提出之以應力自組裝之垂直面鏡,(a) 上視圖,(b)面鏡直立狀態(側視圖) ,(c) 面鏡倒下狀態(側視圖)……………………….63
圖2-18本文所提出之以應力自組裝之垂直面鏡製造結果SEM……….….64
圖2-19直立角度與應力相依之面鏡設計 (a) SEM , (b) 示意圖………65
圖3-1 肋強化樑示意圖, (a)以體型微矽加工製造之肋強化樑, (b)以面型微矽加工製造之肋強化樑………………………………………...84
圖3-2 平面樑與肋強化樑之斷面及參數定義,(a)平面樑之斷面, (b)肋強化樑之斷面……………………………………………………….….85
圖3-3 肋強化樑之特化例子,(a) T 形斷面,(b)凹型斷面……………86
圖3-4 肋強化樑的彎曲剛性分析結果…..………….…………………….87
圖3-5 肋強化微懸臂樑的製造流程……..…………….………………….88
圖3-6 肋強化微懸臂樑的SEM…………………….……………………..89
圖3-7 RIE 溝渠的SEM…………………….…….……………………..90
圖3-8 平面型微懸臂樑與肋強化微懸臂樑的SEM,(a)平面微懸臂樑,與(b) 肋強化微懸臂樑…………………………………………….……….91
圖3-9 PECVD SixNy材質的平面型微懸臂樑與肋強化微懸臂樑的表面輪廓圖,(a)平面微懸臂樑沿著軸向的形變曲線,與(b) 肋強化微懸臂樑沿著軸向的形變曲線………………………………………………..92
圖3-10 LPCVD LS-SiN 材質的平面型微懸臂樑與肋強化微懸臂樑的表面輪廓圖,(a)平面型微懸臂樑沿著軸向的形變曲線,與(b) 肋強化微懸臂樑沿著軸向的形變曲線…………………………….……………..93
圖3-11 深溝渠肋強化懸臂量剛性增益分析……….……………………..94
圖 3-12 本文所提出之肋強化環之薄膜微面鏡及其參數定義……..….95
圖 3-13 圓形平板承受彎曲力矩變形為球殼之示意圖及其參數定義……96
圖 3-14 光學放大率的定義.………………………………………..……97
圖 3-15 不同面鏡尺寸的光學放大率與面鏡曲率在關係圖……………..98
圖 3-16 微扭轉面鏡承受慣性分布力及集中扭矩的形變示意圖………..99
圖 3-17 圓形平面式微扭轉面鏡承受動態負載的FEM分析結果…….…100
圖 3-18 肋強化環微面鏡的製造流程…………. ………………………101
圖 3-19 肋強化環微面鏡SEM…………. ………………………..……102
圖 3-20 微面鏡的表面輪廓量測圖,(a)平面形微面鏡,與(b)肋強化環微面鏡…………………………………………………………….…103
圖 3-21微扭轉面鏡的模態分析,(a)平面形微面鏡,與(b)肋強化環微面鏡……………………………………….……………………...104
圖 3-22肋強化環微扭轉面鏡承受動態負載的FEM分析結果,(a)應變分析結果,與(b) 形變分析結果………………………………..…….105
圖 3-23 具格狀強化環之高剛性平板……………………………….….106
圖 3-24 具格狀強化環之高剛性平板之表面輪廓量測圖…………….107
圖 3-25 具格狀結構之高剛性平板……………….…………………....108
圖 4-1 圖4-1 出平面槓桿示意圖及其參數定義,(a) 上視圖,及(b)側視圖………………………………….…………………………….126
圖 4-2 扭轉軸所承受之負載,為 (a)橫向力,及(b)扭矩之合成……127
圖 4-3扭轉軸所承受之負載與應變關係圖,(a)應變與橫向力之關,及(b)應變與角度之關係…………………………………………………….128
圖 4-4 出平面槓桿在S1端點承受額定位移時的形變量測圖…………..129
圖 4-5雙槓桿的複載測試,(a) 雙槓桿結構示意圖,(b)雙槓桿平面槓桿在S1端點承受額定位及S2端點承受負載時的形變量測圖……….130
圖 4-6 靜電平板槓桿放大致動器示意圖………………………….….131
圖 4-7 比較佔用相同面積之(a) 具 120 根指狀電極的梳狀致動器,及(b) 靜電平板槓桿放大致動器兩者的出力及位移……………………132
圖 4-8 不同形狀電極之EDLA及其電極形狀之定義…………….…….133
圖 4-9 不同形狀電極之EDLA及其電極形狀之出力-位移分析結果…...134
圖 4-10 EDLA之製造流程……………………………………………...135
圖 4-11 EDLA之SEM…………………………………..……………...136
圖 4-12 不同槓桿率之EDLA的電壓-位移量測結果…..………….…...137
圖 4-13 不同形狀電極之EDLA之SEM..…………………..…….…...138
圖4-14 不同形狀電極之EDLA之電壓-位移量測結果……..…….…...139
圖 4-15 具排氣道之EDLA,(a) SEM,及(b)DD’ 之斷面示意圖……..140
圖 4-16具排氣道與不具排氣道之EDLA動態響應量測圖…………....141
圖 5-1複合式製程(MOSBE)示意圖, 其中 (a) DRIE (加工深度20mm)用以產生高深寬比的結構, (b)面型微矽加工 (加工深度2mm)用以產生高寬深比的結構, 而(c)體型微矽加工 (加工深度200mm)用以產生高精準度的凹槽…………………………………………………153
圖 5-2 以MOSBE製程可製造出構形豐富的微機械結構, (a) 縐褶支承(corrugated) 平板, (b) 折狀彈簧支承平板 , (c) 可三軸扭轉之微面鏡 …………………………………………………………………154
圖 5-3 以MOSBE製程可製造出的基本結構, (a)此一平台所包含的結構之集合,(b) 肋強化樑,(c)所示之×撓樑 (d) Z撓樑與基板間的小間距g, (e) 扭轉軸,另外此矽基平台也能提供深凹槽、V型槽、深溝渠………………………………………………………………….…155
圖 5-4 以MOSBE製程所製造的動態微光機械平台,其關鍵組件包含了高出力的致動器,撓性接點,及肋強化的被動件………….………..156
圖 5-5 以本文所提之光學平台所架構之新穎微面鏡……………….….157
圖 5-6 扭力產生器之操作原理示意圖 ……………………………....158
圖 5-7 微面鏡之模態示意圖,(a)第一個扭轉模態為驅動機構與面鏡平板同相位運動,(b)第二個扭轉模態為驅動機構與面鏡平板反相位運動 ……………………………..………………………………....159
圖 5-8 微面鏡之製造流程圖…………………………………..……....160
圖 5-9 微面鏡之金屬化製造流程圖…………………………………....161
圖5-10 微面鏡製造結果, (a)元件整體之SEM,(b) 肋強化面鏡細部之SEM,(c)驅動電極細部之SEM……………..…..………………162
圖 5-11 微面鏡動態量測圖………………………………………….....163
圖 5-12 微扭轉面鏡在(a)靜止時所反射的雷射光點,(b)第一個扭轉模態下 所反射出的雷射軌跡……………………………….……….....164
表 目 錄
表3-1 肋強化環微扭轉面鏡與平面形微面鏡之參數與模擬結果總結……83
表4-1 不同槓桿率之EDLA參數及量測結果….……………………………125
[1] 李雅明,半導體的故事,台北:新新聞,1999.
[2] M. Riordan, and L. Hoddeson, Crystal Fire, 台北: 天下遠見, 1998.
[3] W. R. Runyan, and K. E. Bean, Semiconductor Integrated Circuit Processing and Technology. NY: Addison Wesley, 1990.
[4] E. Hecht, Optics. NY: Addison Wesley, 1998.
[5] B. E. A. Saleh, and M. C. Teich, Fundamentals of Phonics. NY: Wiley, 1991.
[6] D. J. Bishop, C. R. Gules, and S. R. Ras ” The rice of optical switching, ” Scientific American, June , pp. 88—94, 2001.
[7] S. V. Kartalopoulos, Introduction to DWDM Technology. NJ: IEEE Press, 2000.
[8] Toshiyoshi’s short cource of Optical MEMS, http://www.toshi.fujita3.iis.u-tokyo.ac.jp/
[9] Sandia National Lab Process, http://www.sandia.gov/
[10] http:// www.ti.com
[11] K. E. Peterson, “Silicon as a Mechanical Material,” Proceeding of the IEEE, vol. 70, no 5, pp. 420—457, 1982.
[12] K. E. Peterson, “Silicon Torsional Scanning Mirror,” IBM J. Res. Develop, vol. 24, no 5, pp. 631—637, 1980.
[13] K. E. Peterson, “Micromechanical light modulator array fabricated on silicon,” Appl. Phys. Lett., vol. 31, no 5, pp. 521-524, 1977.
[14] M. C. Wu, “ Micromachining for Optical Optoelectronic Systems,” Proceeding of the IEEE, vol. 85, no 11, pp. 1833—1856, 1997.
[15] R. S. Muller, K. Y. Lau, “Surface-Micromachined Microoptical Elements and Systems,” Proceeding of the IEEE, vol. 86, no 8, pp. 1705—1720, 1998.
[16] R. T. Howe and R. S. Muller, “Polycrystalline silicon micromechanical beams,” in Proc. Electrochemical Society Spring Meeting, Montreal, Quebec, Canada, May 9—14, 1982, pp.184—185.
[17] L. S. Fan, Y. C. Tai, and R. S. Muller,” IC-processed electrostatic micro-motor,” IEEE IEDM, San Francisco, CA., 1988, pp. 666-669.
[18] W. C. Tang, T. C. H. Nguyen, and R. T. Howe, “ Laterally driven polysilicon resonants,” Sensors and Actuators, vol. 21, pp. 328-331, 1990.
[19] T. A. Core, W. K. Tsang, and S. J. Sherman, “Fabrication technology for an integrated surface-micromachined sensor,” Solid State Technol., vol. 36, no. 10, pp. 39-47, 1993.
[20] C. T.-C. Nguyen, “MEMS for wireless communications,” in Proc. IEEE Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Feb. 1998, pp. 1—7.
[21] C.-J Kim, A. P. Pisano, R. S. Muller, ,”Silicon-processed overhanging microgripper, ” Journal of Microelectromechanical Systems, vol.1, pp.31 —36, 1992.
[22] K. S. J. Pister, M. W. Judy, S. R. Burgett, and E. S. Fearing, “ Microfabricated hinges.” Sensors and Actuators: A, vol. 33, pp. 149-256, 1992.
[23] MCNC, The Multi-User MEMS Processes (MUMPs®), http://www.memsrus.com/cronos/svcsmumps.html
[24] M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister,” Micro-machined free-space integrated micro-optics,” Sensors and Actuators: A, vol. 50, pp.127-134, 1995.
[25] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Opt. Lett., vol. 21, no. 2, pp. 155—157, Jan. 15, 1996.
[26] P. W. Green, R, R, A, Syms, and E. M. Yeatmam, “Demonstration of three-dimensional microstructure self-assumble, “Journal of Microelectromechanical Systems, vol. 4, pp. 170-176, 1995.
[27] T. Akiyama, D. Collard, and H. Fujita,” Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” Journal of Microelectromechanical Systems, pp. 10-17, 1997.
[28] J. H. Comtois, V. M. Bright, and M. W. Phipps, “ Applications for surface-micromachined polysilicon thermal actuators and arrays,” Sensors and Actuators: A, vol. 58, pp. 19-25, 1997.
[29] M. J. Daneman, O. Solgaard, N. C. Tien, K. Y. Lau, R. S. Muller, “ Laser-to-fiber coupling module using a micromachined alignment mirror, “ Photon. Tech. Lett., vol.8, pp. 396-398, 1996.
[30] M. F. Dautartas, A. M. Benzoni, Y. C. Chen, G. E. Blonder, B. H. Johnson, C. R. Paola, E. Rice, and Y. H. Wong, “A siliconbased moving mirror optical switch,” J. Lightwave Technol., vol. 8, pp. 1078—1085, 1992.
[31] S. S. Lee, L. Y. Lin, and M. C. Wu, “Surface-micromachined free-space fiber optic switches,” Electron. Lett., vol. 31, no. 17, pp. 1481—1482, Aug. 1995.
[32] J. L. Shen, L. Y. Lin, S. S. Lee, M. C. Wu, and M. Sergent, “ Surface-micromachined turnable three-dimensuinal solid Fabry-Perot etalons with dielectric coatings, “ Electronics Letters, vol. 31, no. 25, pp. 2172-2173, 1995.
[33] M. H. Kiang, J. T. Nee, K. Y. Lau, and R. S. Muller, “ Surface-micromachined diffraction gratings for scanning spectroscopic applications, ” Transducer 97, Chicago, June, 1997, pp. 343-345.
[34] P. M. Hagelin, O. Solgaard, “Optical Raster-Scanning Displays Based on Surface-Micromachined Polysilicon Mirrors,” IEEE Selected Topics in Quantum Electronics, vol. 5, no 1, pp. 67—74, 1999.
[35] M.-H. Kiang, O. Solgaard, R. S. Muller, and K. Y. Lau, “Electrostatic Combdrive-Actuated Micromirrors for Laser-Beam Scanning and Positioning,” Journal of Microelectromechanical Systems, vol. 7, pp. 27—37, 1998.
[36] P. F. V. Kessel, L. J. Hornbeck, R. E. Meter, and M. R. Douglass, “A MEMS-Based Projection Display,” Proceeding of the IEEE, vol. 86, no 8, pp. 1687—1704, 1998.
[37] R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “Dynamic deformation of scanning mirrors,” in Proc. 2000 IEEE/LEOS International Conference on Optical MEMS, Kauai, HI., Aug., 2000, pp. 49-50.
[38] R. Conant, J. Nee, M. Hart, O. Solgaard, K. Lau, R. Muller, "Reliability and Robustness of Micromachined Scanning Mirrors," MOEMS''99, Mainz Germany, Sep., 1999, pp. 120-126.
[39] P. R. Patterson, G.-D. J. Su, H. Toshiyoshi, and M. C. Wu,” A MEMS 2-D Scanner with bonded single-crystallind honeycomb micromirror, “ Proc. Solid-State Sensor and actuator workshop, Hilton head, SC, June, 2000, pp. 17-18. (late news paper)
[40] S. A. Mcaulay, H. Ashraf, L. Atabo, A. Chambers, S. all, J. Hopkins, and G. Nicholls, ” Silicon micromachining using a high density plasmasource,” J. Phys. D: Appl. Phys., vol. 34, pp. 2769-2774, 2001.
[41] J. -L.A. Yeh, J. Hongrui, and N. C. Tien, “Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator,” Journal of Microelectromechanical Systems, vol.8, pp. 456-462, 1999.
[42] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “ Lucent MicrostarTM Micromirror array Technology for Large Optical Crossconnects, Proc. SPIE 4178, pp. 320-324, 2000.
[43] V.A.Aksyuk, S.Arney, N.R.Basavanhally, D.J.Bishop, C.A.Bolle, C.C.Chang, R.Frahm, A.Gasparyan, J.V.Gates, R.George, C.R.Giles, J.Kim, P.R.Kolodner, T.M.Lee, D.T.Neilson, C.Nijander, C.J.Nuzman, M.Paczkowski, A.R.Papazian, “238×238 Surface Micromachined Optical Crossconnect With 2dB Maximum Loss,” OFC’02, Anaheim, CA. March, 2002. (Post deadline paper)
[44] D. Koester, R. Majedevan, A. Shishkoff and K. Markus, "Multi-user MEMS processes (MUMPs) introduction and design rules," Rev. 4, MCNC MEMS Technology Applications Center, Research Triangle Park, NC, July 1996.
[45] H. Guckel, D. W. Burns, C. C. G Visser, H. A. C. Tilmans, and D. DeRoo, ”Fine Grained Polysilicon Films with Bulit-in Tensile Strain.” IEEE Trans, on Elect.Devices, vol. 35, No. 6, June, 1988, pp. 800-801.
[46] H. Guckel, T. Randazzo and D. W. Burns, ” A simple technique for the determination of thin films with application of polysilicon,” J. Appl. Phys., vol. 57, 1985, pp. 1671-1675.
[47] H. Guckel, D. W. Burns, H. A. C. Tilmans, D. W. DeRoo, C. R. Rutigliano, “Mechanical properties of fine-grained polysilicon: The repeatability issue,” in Proc. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 1988, pp. 96—99.
[48] H. Guckel, J. J. Sniegowski, T. R. Christenson, and F. Raissi, “The application of fine-grained tensile polysilicon to mechanically resonant transducers,” Sensors Actuators, vol. A21-A23, pp. 346—350, 1990.
[49] G. T. Mulhern, D. S. Soane, and R. T. Howe, “Supercritical carbon dioxide drying of microstructures,” in Proc. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers’93), Yokohama, Japan, June 7—10, 1993, pp. 296—299.
[50] T. Abe, W. C. Messner, and M. L. Reed, “Effective methods to prevent stiction during post-release-etch processing,” in Proc. IEEE Micro Electro Mechanical Systems Workshop, Amsterdam, The Netherlands, Jan. 29—Feb. 2, 1995, pp. 94—99.
[51] H. Toshiyoshi, W. Piyawattanametha, C. T. Chan and M. C. Wu, “Linearization of Electrostatically Actuated surface micromachined 2-D Optical Scanner, “Journal of Microelectromechanical Systems, vol. 19, pp. 205-211, 2001.
[52] F. Pardo, R. Boie, G. Elko, R. Sarpeshker, and D. J. Bishop, “ All-surface-micromachined Si microphone, ” Transducers’99, Sendai, Japan, June, 1999, pp. 1064-1065.
[53] A. Friedberger, and R. S. Muller, “Improved surface-micromachined hinges for fold-out structures,” Journal of Microelectromechanical Systems, vol. 7, no. 3, pp. 315-319, 1998.
[54] P. E. Kladitis, K. F. Harsh, V. M. Bright, and Y. C. Lee, “Three-dimensional modeling of solder shape for the design of solder self-assembled micro-electro-mechanical systems,” Proceeding of the ASME MEMS’99 Workshop, Nashville, Tennessee, November, 1999, pp. 11-18.
[55] Y. W. Yi and C. Liu, “Magnetic actuation of hinged microstructures,” Journal of Microelectromechanical Systems, vol. 8, no. 1, pp. 10—17, 1999.
[56] U. Srinivasan, D. Liepmann, and R. T. Howe, “Microstructure to substrate self-assembly using capillary Forces,” Journal of Microelectromechanical Systems, vol. 10, no. 1, pp.17-24, 2001.
[57] V. Kaajakari, and A. Lal, “Electrostatic batch assembly of surface MEMS using ultrasonic triboelectricity,” Proceeding of the IEEE MEMS’01 Workshop, Interlaken, Switzerland, January, 2001, pp. 10-13.
[58] R. T. Chen, H. Nguyen, M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2×2 optical switch,” IEEE Photonics Technology Letters, vol. 11, no.11, pp.1396-1398, 1999.
[59] V. A. Aksyuk, F. Pardo, and D. J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” Proceedings of SPIE, Paris, France, Mar. , 1999, pp.984-993.
[60] D. C. Miller, W. Zhang, and V. M. Bright, “Microrelay packaging technology using flip-chip assembly,” Proceedings of the IEEE MEMS’00 Workshop, Miyazaki, Japan, January, 2000, pp. 265-270.
[61] 何亦平,”微結構自組裝技術之研究”,國立清華大學碩士論文,2002.
[62] L. Fan, S. Gloeckner, P. D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J. Gritters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu and A. Husain, “Digital MEMS switch for planar photonic crossconnects,” OFC’02, Anaheim, CA., March., 2002. (Post deadline paper)
[63] J. W. Judy and R. S. Muller, “Magnetically actuated, addressable microstructures,” Journal of Microelectromechanical Systems, vol. 6, no. 3, pp.249—256, 1997.
[64] W. I. Jang, M. L. Lee, C. A. Choi, Y. T. Kim, and M. Esashi, ” Latch-up characteristics of thermoelastic Microactuator for surface micromachined MOEM optical switch,” IEEE/LEOS Optical MEMS, Okinawa, Japan, Sep, 2001, pp. 89—90.
[65] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “On the expendability of Free-Space micromachined optical cross connects, “ IEEE J. Lightwave Tech., vol. 18, no. 4, pp. 482—489, 2000.
[66] P. Helin, T. Bourouina, L. Houlet, G. Reyne, and H. Fujita, “Monolithic, single crystal silicon, vertical mirror aarrays with improved integration density for optical crossconnects, “ IEEE/LEOS Optical MEMS, Okinawa, Japan, Sep, 2001, pp. 83—84.
[67] W. Noell, L. Dellmann, C. Marxer, K. Weible, M. Hoffmann, and N. F. de Rooij, “Hybrid 4X4 optical cross connector based on MEMS switch and integrated optical waveguides, ” IEEE/LEOS Optical MEMS, Okinawa, Japan, Sep, 2001, pp. 13—14.
[68] J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical Properties of Surface Micromachined Mirrors with Etch Holes,” Journal of Microelectromechanical Systems, vol. 8, no. 4, 1999, pp. 506-512.
[69] W. Fang and J. A. Wickert, “Determining mean and gradient residual stress in thin films using micromachined cantilevers,” J. Micromech. Microeng., vol. 6, pp. 301-309, 1996.
[70] H. Guckel, D. Burns, C. Rutigliano, E. Lovell and B. Choi, “Diagnostic microstructures for the measurement of intrinsic strain in thin films,” J. Micromech. Microeng., vol. 2, pp. 86-95, 1992.
[71] W. A. P. Claassen, W. G. J. N. Valkenburg, M. F. C. Willemsen and W. M. v. d. Wilgert, “Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers,” J. Electrochem. Soc., vol. 132, pp. 893-898, 1985.
[72] X. Zhang, T. Y. Zhang, M. Wong and Y. Zohar, “Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing,” Sensors and Actuators, vol. A64, pp. 109-115, 1998.
[73] B. C. S. Chou, J.-S. Shie and C.-N. Chen, ”Fabrication of low-stress dielectric thin-film for microsensor applications,” IEEE Electron Device Letters, vol. 18, pp. 599-601, 1997.
[74] F. volklein, “Thermal conductivity and diffusivity of a thin film SiO2-Si3N4 sandwich system,” Thin solid films, vol. 188, PP. 27-33, 1990.
[75] J. H. Jerman, D. J. Clift and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragms support,” Sensors and Actuators, vol. A29, pp. 151-158, 1991.
[76] S. S. Lee, R. P. Ried and R. M. Write, “Piezoelectric cantilever microphone and microspeaker,” Journal of Microelectromechanical Systems., vol. 5, pp. 238-242, 1996.
[77] D. Haronian, and N. C. MacDonald, “ Spring suspended corrrugated membranes,” J. Micromech. Microeng.,vol 5, pp.289-296, 1995
[78] T. A. McMahon and J. T. Bonner, On Size And Life. New York, NY: Scientific American Books, 1983.
[79] F. P. Beer and E. R. Johnston, JR., Mechanics of materials. NY: McGraw-Hill, 1992.
[80] J. T. Nee, R. A. Conant, M.R. Hart, R. S. Muller, K. Y. Lau, “Stretched-film micromirrors for improved optical flatness,” Proc. IEEE MEMS’2000, Miyazaki, Japan, January, 2000, pp. 704-709.
[81] R. A. Conant, J. T. Nee, K. Y. Lau, R. S. Muller, “ A flat high-frequency scanning micromirror,” Hilton Head’00, pp. 6-9, 2000.
[82] R. D. Cook, and W. C. Young, Advanced mechanics of materials, New York: Macmillan, 1985.
[83] J. J. Sniegowski, and E. J. Garcia, “Surface-micromachined gear trains driven by an on-chip electrostatic microengine,” IEEE Electron Device Letters, vol. 177, 1996, pp. 366-367.
[84] O. Degani, E. Socher, A. Lipson, T. Lejtner, D. J. Setter, S. Kaldor, and Y. Nemirovsky, “ Pull-in study of an electrostatic torsion microactuator,” J. Microelectromechanical Systems, vol. 74, 1998, pp. 373-379.
[85] L. Lin, A. P. Pisano and R. T. Howe ” A micro strain gauge with mechanical amplifier,” J. Microelectromechanical Systems, vol.6, pp.313-321, 1997.
[86] C.R. Giles, V. Aksyuk, B. Barber, R.R. Stulz and D. Bishop,” A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. STIQE.,vol. 5, pp. 18-22, 1999.
[87] A. H. Heuer, and S. J. Jacobs, Material Science of MEMS Devices. PA. : MRS, 1998.
[88] R. Legtenberg, J. Gilbert, S.D. Senturia, and M. Elwenspoek,” Electrostatic curved electrode actuators,” J. Microelectromechanical Systems., vol.63, pp.257-263, 1997.
[89] N. Uchida, K. Uchimaru, M. Yonezawa, and M. Sekimura, “Damping of micro electrostatic torsion mirror caused by air-film viscosity,” IEEE MEMS’00, pp. 449-455, 2000.
[90] H. —M. Jeong, J.-J. Choi, K. Y. Kim, K. B. Lee, J. U. Jeon, and Y. E. Pak, “ Milli-scale mirror actuator with bulk micromachined vertical combs,” Tranducers’99, Sendai, Japan, June, 1999, pp. 1006-1009.
[91] J. Kim, S. Park, and D. Cho, “ A novel electroststic vertical actuator fabricated in one homogeneous silicon wafer usinf extended SBM technology,” Tranducers’01, Munich, Germany, June, 2001, pp. 756-759.
[92] H.-H. Hu, H.-Y. Lin, B.C.-S. Chou, and W. Fang, 2001, “Characteristics of the Micromachined Beams on the (111) Substrate,” Sensors and Actuators A, vol. 93, 2001, pp. 258.
[93] V. Milanovic, M. Last, K. S. J. Pister, ”Torsional Micromirrors with Lateral Actuators, ” Transducers’01, Munich, Germany, June, 2001, pp. 1298-1301.
[94] H.-Y. Lin, M.-C. Wu, M.-L. Tsai, and W. Fang, “Towards a LightWave MEMS Platform Using MOSBE Process ”IEEE/LEOS Optical MEMS, Okinawa, Japan , Sep., 2001, pp.103-104.
[95] C.G. Keller, R. T. Howe, “Nickel-filled Hexsil thermally Actuated Tweezers’ Transducers’95, Stockholm Sweden, June, 1995, pp. 376—379.
[96] Y. —P. Ho, M. Wu, H. —Y. Lin and W. Fang, “ A robust and reliable stress-induced self-assumbly mechanism for optical devices,” IEEE/LEOS Optical MEMS ’02, Lugano, Switzerland, Aug., 2002, paper WP38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top