|
[1] A. L. Halmos, D. V. Boger, and A. Cabelli, The behavior of a power-law fluid through a sudden expansion, AICHE J. 21(3) (1975) 541-549. [2] T. B. Gatski, J. L. Lumley, Steady flow of a non-Newtonian fluid through a contraction, J. Comp, Phys. 27 (1978) 42-70. [3] T. M. Getmenyuk, G. A. Belinskii, V. G. Kulichikhin, and T. G. Surius, Quantitative description of the stress and velocity fields in the flow of polymer systems through spinneret channels, Fibre Chem., 17(2) (1985) 100-105. [4] V. P. Pervadchuk, I. O. Glot, and V. I. Yankov, Nonisothermal flow of polymer melts and solutions in spinneret channels, Fibre Chem., 18(4) (1986) 308-312. [5] V. P. Pervadchuk, I. O. Glot, V. I. Yankov, V. Z. Volko, and L. B. Mal’Kov, Losses in liquid pressure at the entrance to spinneret holes, Fibre Chem., 18(2) (1986) 143-147. [6] V. P. Pervadchuk, I. O. Glot, V. I. Yankov, A. S. Borisov, and Yu. A. Vinogradov, Effect of the entry cone angle of the spinneret hole on the flow characteristics of the polymer melt, Fibre Chem. 18(4) (1986) 213-216. [7] V. I. Yankov, I. O. Glot, V. Z. Volko, V. P. Pervadchuk, and L. B. Mal’Kov, Effect of accuracy in making spinneret holes on uniformity of properties of fibers and yarns, Fibre Chem., 20(4) (1989) 284-287. [8] W. J. Yang, Handbook of Flow Visualization, Hemisphere, Washington, 1989. [9] Y. H. Chang, S. H. Wen, and T. J. Liu, Experimental observation on entrance flow inside extrusion dies, Polymer Eng. and Sci. 36(21) (1996) 2663-2675. [10] Haydee, Convection patterns in a triangular domain, Int. J. of heat and mass transfer 38 (1995) 351-362. [11] Asan, H. and Namli, L., Laminar natural convection in a pitched roof of triangular cross-section: summer day boundary conditions, Energy & Buildings 33 (2000) 69-73. [12] Asan, H. and Namli, L., Numerical simulation of buoyant flow in a roof of triangular cross-section under winter day boundary contions, Energy & Buidings 33 (2001) 753-757. [13] Flack, R. D. and Klaus Brun, Measurement and Prediction of Natural Convection Velocities in Triangular Enclosures, Int. J. Heat and Fluid Flow 16, (1995) 106-113. [14] Akinsete, V. A. and Coleman, T. A., Heat transfer by steady laminar free convection in triangular enclosures, Int. J. Heat Mass Transfer 25 (1982) 991-998. [15] Liou, J. H. and Hong, Z. C., Numerical Simulation of Double-Diffusive Natural Convection in a V-shaped Sump by a Control Volume Method Based on an Unstructured Triangular Grid,” Num. Heat Transfer, Part A Vol.34 (1988) 431-446. [16] Becker, E. W., Ehrfeld, W., Hagmann, p., Maner, A., and Munchmeyer, D., "Fabrication of microstructures with extreme structural heights by synchrotron radiation lithography, galvanoforming and plastic forming (LIGA process)", Microelectron. Eng., vol. 4, 35-56, 1986. [17] G. E. Schneider, Elliptic system: finite element method, in W. J. Minkowycz, E. M. Sparrow, G. E. Schneider, and R. H. Pletcher (eds.), Hand book of Numerical Heat Transfer, chap. 10, Wiely, New York, 1988. [18] C. Masson and B. R. Baliga, A control-volume finite element method for dilute gas-solid partical flows, Comput. Fluids 23, (1994) 1073-1096. [19] C. Prakash and S. V. Patankar, A control volume based finite element methods for solving the Navier-Stokes equations using equal-order-interpolation. Num. Heat Transfer 8 (1985) 259-280. [20] Y. Cheng, B. Y. Shew, C. Y. Lin, D. H. Wei and M. K. Chyu, “Ultra-deep LIGA process” J. Micromech. Microeng., 9, 58-63, March 1999. [21].Y. Cheng, N.-Y. Kuo, and C. H. Su, “Dose distribution of synchrotron x-ray penetrating materials of low atomic numbers”, Review of Scientific Instrument, 68(5), 2163-2166, May 1997. [22] G. Feiertag, W. Ehrfeld, H. Lehr, A. Schmid, M. Schmid, “ Accuracy of structure transfer in deep X-ray lithography”, Microelectronic Engineering, 35, 557-560, 1997
|