跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭健育
研究生(外文):Chien-Yu Peng
論文名稱:應用隨機積分決定高可靠度產品最適預燒時間之研究
論文名稱(外文):Optimal Burn-in Time Via Stochastic Integral
指導教授:曾勝滄曾勝滄引用關係
指導教授(外文):Tseng, S. T.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:40
中文關鍵詞:預燒程序高可靠度產品混和 Wiener 過程積分 Wiener 過程最適篩選法則
外文關鍵詞:burn-in proceduremixture Wiener process
相關次數:
  • 被引用被引用:2
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:1
為了確保產品品質能長期符合消費者之需求,
如何進行一有效的篩選試驗 (Screening Procedure, 或稱預燒 (Burn-in) 測試) 以及評估產品之壽命,
是所有製造商或生產者皆要面臨之一重要決策問題。針對高可靠度產品,
若存在一與壽命具高度相關之品質特徵值 (Quality Characteristic, 簡稱 QC)
且假設該品質特性之衰變路徑服從一 Wiener 過程,
則可由成本觀點建構一套篩選試驗執行程序, 以決定最適之預燒時間。
然而當產品品質特徵值之衰變速度緩慢時, 將須要很長的預燒時間才能達到篩選良莠之目的,
因此如何利用類似 Cusum 之觀念, 整合隨機積分來達到快速分類, 以確保產品品質,
將是決策者之一大挑戰。
本論文首先利用混合 Wiener 過程來描述產品在進行預燒測試之前的衰退路徑,
接著引進積分之 Wiener 過程來計算衰變路徑的累積衰退量,
進而建構出適當判別 (分類) 準則, 得以快速篩選出產品之不良品。
最後本研究將與 Tseng \& Tang (2001) 之方法作理論上的比較分析,
詳細說明錯誤分類損失的機率及成本之差異,
並探討此兩種方法的使用時機及範圍限制。
此研究之成果可提供生產者剔除不良產品之有效篩選程序,
它將有助於廠商縮短預燒測試時間及節省試驗成本。
chapter1 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討 2
1.3 研究範圍與限制 4
1.4 研究架構 5
chapter2 高可靠度產品之篩選試驗及壽命推估 6
2.1 問題描述 6
2.2 衰變試驗模型 7
2.3 高可靠度產品之累積衰變量之建構 8
2.4 實例說明 13
2.5 正常產品之壽命推估程序 15
chapter3 理論分析之方法比較 18
3.1 使用範圍及限制 18
3.2 錯誤分類機率和之比較 20
3.3 錯誤分類成本之比較 23
chapter4 結論與後續研究工作 27
4.1 結論與建議 27
4.2 後續研究工作 29
附錄 30
A.1 Wiener 過程與逆高斯分配 30
A.2 隨機積分之期望值及變異數 32
參考文獻 35
Chhikara, R. S. and Folks, L., (1989),The Inverse Gaussain Distribution. Theory, Methodology, and Applications, Marcel Dekker, Inc.
Cohen, A. C. (1967),''Estimation in Mixture of Two Normal Distributions,"Technometrics, 9, 15-28.
Hoel, P. G., Port, S. C. and Stone, C. J. (1972),Introduction to Stochastic Processes, Waveland Press, Illinois 60070.
Jensen, F. and Petersen, N. E., (1982), Burn-in: An Engineering Approach to the Design and Analysis of Burn-in Procedures, John Wiley \& Sons, Inc.
Kuo, W., (1984),''Reliability Enhanceement Through Optimal Burn-in,",IEEE Transactions on Reliability, 3, 145-156.
Kuo, W. and Kuo, Y, (1983),''Facing the headaches of Early Failures: A State-of-the Art Review of Burn-in Decisions,",Proceedings of the IEEE, 71, 11, 1257-1266.
Lawrence, M. J., (1966),''An Investigation of the Burn-in Problem,"Technometrics, 8(1), 61-71.
Lindsay, B. G., (1989),''Moment Matrices: Applications in Mixturs,"Annals of Statistics, 17, 722-740.
Lindsay, B. G. and Basak, P., (1993),''Multivariate Normal Mixturs: A Fast Consistent Method of Moments,"Journal of the American Statistical Association, 88, 468-476.
Leemis, L. M. and Beneke, M., (1990),''Burn-in Models and Methods: A Review,"IIE Transactions, 22(2), 172-180.
Meeker, W. Q. and Escobar, L. A. (1998),Statistical Methods for Reliability Data,New York: John Wiley \& Sons.
Nelson, W., (1990),Accelerated Testing: Statistical Models, Test Plans, and Data Analyses,New York: John Wiley \& Sons.
Nguyen, D. G. and Nurthy, D. N. P., (1982),''Optimal Burn-in Time to Minimize Cost for Products Sold under Warranty,"IIE Transactions, 14(3), 167-174.
Titterington, D. M., Smith, A. F., and Makov, U. E. (1985),Statistical Analysis of Finite Mixture Distributions,New York: John Wiley \& Sons.
Tseng, S. T. and Tang, J., (2001),''Optimal Burn-in Time for Highly Reliable Products,"International Journal of Industrial Engineering, 8, 329-338.
Tseng, S. T., Tang, J. and Ku, I. H., (2002),''Determination of Optimal Burn-in Parameter and Residual Life for Highly Reliable Products,"To appear in Naval Research Logistics,
Tseng, S. T. and Yu, H. F., (1997),''A Termination Rule for Degradation Experiment,"IEEE Transactions on Reliability, 46, 130-133.
Yu, H. F. and Tseng, S. T., (1999),''Designing a Degradation Experiment,"Naval Research Logistics, 46, 689-706.
Wald, A. (1947),Sequential Analysis,New York: John Wiley \& Sons.
Watson, G. S. and Wells, W. T., (1961),''On the Probability of Improving the Mean Useful Life of Items by Eliminating Those with Short Lives,"Technometrics, 3(2), 281-298.
Whitmore, G. A. and Yalovsky, M., (1978),''A Normalizing Logarithmic Transformation for Inverse Gaussian Random Variables,"Technometrics, 20, 207-208.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top