跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/14 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王聖文
研究生(外文):Sheng-Wen Wang
論文名稱:SPIHT的多階局部區域壓縮演算法
論文名稱(外文):SPIHT with RoI for Image Compression
指導教授:陳朝欽陳朝欽引用關係
指導教授(外文):Chaur-Chin Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:31
中文關鍵詞:小波壓縮
外文關鍵詞:Wavelet Compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
影像壓縮已被研究了許多年,其目的在於不影響視覺失真的情況下縮減影像的位元序列表示為更小的檔案。過去被提出來的許多的壓縮方法中,小波壓縮被發現比其它壓縮法擁有較多的優點。
本論文的第一部份是過去十年比較重要的四種壓縮方法的比較。藉由相關論文的研讀與實驗,讓人對於相關知識有更深刻的了解。論文的另一部份針對SPIHT(階乘式樹狀集合分割演算法)小波壓縮法去做研究,並提出一個有趣區域壓縮演算法的改進。原始的有趣區域壓縮的影像壓縮法是一種小波壓縮(SPIHT)的延伸,它能夠在壓縮過程中給予一個重要的區域加強精確度,因而解壓縮端能夠在解壓縮時,那區域將比其它區域得到較高的精確度。這種有趣區域壓縮的影像壓縮法雖然已提供一個方法讓重要區域在解壓縮有較高的精確度,但是並無法提供足夠的應用。因此,將此方法簡單地修正為能夠提供多階有趣區域壓縮的影像壓縮方法,就可讓實際的應用更為廣泛。實驗結果不只顯示了具有有趣區域壓縮法功能的影像壓縮法在網際網路上極高壓縮比下的重要性,也顯示了修正的方法在惡劣的網路條件下較佳的表現。

Image compression has been studied for years in order to reduce the representation of the bit streams of an image into a smaller file with less optic loss. Wavelet compression is found to possess more advantages than others while a variety of previous approaches have been proposed in this field.
The first part of the thesis consists of a comparison of four schemes of image compression, JPEG, vector quantization, fractal compression, and wavelet compression, all of which are most popular in the past decade. Deeper understanding of them would be built through the survey of some related work and its experimental results. In the other part, this thesis studies a method of the wavelet compression and proposes a modification of SPIHT with RoI. The experiments depict not only the importance of a compression method that provides the primitive RoI functionality at a very high compression ratio over the Internet but also the better performance of this modified scheme in the harsh condition of the Internet.

Chapter 1 Introduction ..................................1
Chapter 2 Image Compression: A Review ...................4
2.1 JPEG/DCT ........................................4
2.2 VQ Compression ..................................5
2.3 Fractal Compression .............................6
2.3.1 Preview .......................................6
2.3.2 Fractal Encoding System .......................7
2.3.3 A Fractal Decoding Algorithm ..................8
2.4 Wavelet Compression .............................8
2.5 Experimental Results ...........................12
Chapter 3 Region-of-Interest Coding on SPIHT ...........16
Chapter 4 Modified Region-of-Interest Coding on SPIHT ..19
4.1 Modified RoI Scheme ............................19
4.2 Experimental Results ...........................24
Chapter 5 Conclusion ...................................27
Appendix I .............................................28
Appendix II ............................................29
References .............................................30

[Ada00] M.D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet transforms for image compression: Performance evaluation and analysis,” IEEE Trans. on Image Processing, vol. 9, pp. 1010-1024, 2000.
[Ant92] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Processing, vol. 1, pp. 205-220, 1992.
[Ats98] E. Atsumi and N. Farvardin, “Lossy/Lossless Region-of Interest Image Coding Based on Set Partitioning in Hierarchical Tress,” IEEE Trans. on Image Processing, vol. 1, pp. 87-91, 1998.
[Bar88] M.F. Barnsley, “Fractals Everywhere,” Academic Press, Boston, 1988.
[Bar93] M.F. Barnsley and L.P. Hurd, “Fractal Image Compression,” AK Peters, Ltd. Wellesley, Massachusetts, 1993.
[Bou99] N.V. Bougloris and M.G. Strinzis, “Reversible multiresolution image coding based on adaptive lifting,” Proc. IEEE Int. Conf. Image Processing, Oct. 24-28, 1999.
[Che84] W.H. Chen and W.K. Pratt, “Scene Adaptive Coder,” IEEE Trans. on Communications, vol. 32: 255-232, 1984.
[Che98] C.C. Chen, “On the Selection of Image Compression Algorithms,” IEEE Proceedings of the 14th International Conference on Pattern Recognition, Brisbane, Australia, 1500-1504, 1998.
[Jac92] A.E. Jacquin, “Image coding based on a fractal theory of iterated contractive image transformations,” IEEE Trans. on Image Processing, vol. 1, pp. 18-30, 1992.
[Lin80] Y. Linde, A. Buzo, and R.M. Gray, “An Algorithm for Vector Qantization Design,” IEEE Trans. on Communications, vol. 28: 84-95, 1980.
[Nas88] N.M. Nasrabadi and R.A. King, “Image codig using vector quantization: a review,” IEEE Trans. on Communications, vol. 36, pp. 957-571, 1988.
[Par01] K.H. Park, C.S. Lee and H.W. Park, “Region-of-interest coding based on set partitioning in hierarchical trees,” IEEE International Conference on Image Processing, Thessaloniki, Greece, Oct. 2001.
[Pen93] W.B. Pennebaker, J. Mitchell, “JPEG Still Image Compression Standard,” New York: Van Nostrand Reinhold, 1993.
[Ram99] V.N. Ramaswamy, K.R. Namuduri, and N. Ranganathan, “Performance analysis of wavelets in embedded zerotree-based lossless image coding schemes,” IEEE Trans. on Signal Processing, vol. 47, pp. 884-888, 1999.
[Rio93] O. Rioul, “Regular wavelets: A discrete-time approach,” IEEE Trans. Signal Processing, vol. 41, pp. 3572-3579, 1993.
[Sai96] A. Said and W.A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 6, pp. 243-250, 1996.
[Sha93] J.M. Shapiro, “Embedded image coding using zerotree of wavelet coefficients,” IEEE Trans. on Signal Processing, vol. 41, pp. 3445-3462, 1993.
[Tau00] D. Taubman, “High Performance Scalable Image Compression with EBCOT,” IEEE Trans. on Image Processing, vol. 9, pp. 1158-1170, 2000.
[Vil94] J.D. Villasenor, B. Belzer, and J. Liao, “Wavelet filter evaluation for image compression,” IEEE Trans. on Image Processing, vol. 4, pp. 1053-1060, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top