跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉振華
研究生(外文):Cheng-Hua Liu
論文名稱:H.26L全域搜尋區塊比對移動估計器之設計
論文名稱(外文):Full-Search Variable-Size Block-Matching Motion Estimation Design for H.26L
指導教授:張 世 杰
指導教授(外文):Shih-Chieh Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:52
中文關鍵詞:全域搜尋區塊比對移動估計
外文關鍵詞:H.26LMotion-EstimationVSBM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在個人通訊設備的普及之後,無線通訊的頻寬就愈來愈受到限制。ITU-T中的VCEG (Video Coding Expert Group) 因此發展了H.26L技術,延續了H.263的優點,並加以利用高度壓縮效率的技術來降低傳輸用的位元數。然而在此技術下若要達到即時的影像壓縮效果(每秒30張),需要非常高速的處理器作運算。同時,移動向量的估計所需要的運算量,佔用了影像壓縮程式龐大的計算量。因此在這篇論文中,提出了一個針對H.26L所設計的全域搜尋移動估計設計,以作為整個影像壓縮系統的協同處理器。對於H.26L中關於移動估計的特性,處理單元的設計必須考慮到七種比對區塊大小的組合,以及五張參考影像的延伸性。採用全域搜尋區塊提供較高的影像品質,並且較具有規則性,適合硬體實作。因此我們採用了處理單元陣列搭配內建記憶體以處理全域搜尋所需要的大量的資訊,在降低了外部記憶體的存取次數同時,也能使得晶片有效率的運作。此晶片是採用cell-based設計流程,以及0.35微米單層多晶矽三層金屬層的互補式金氧半場效電晶體製程技術,工作頻率設定在60MHz。在五張參考影像的需求下,可以達到最大輸出率每秒29張QCIF影像。

Recently, many video encoding standards are applied to the communication devices. In most compression standards, such as H.263, H.26L, MPEG2 and MPEG4, motion estimation exploits large amount of computation power. An emerging video encoding technique, H.26L, achieves a bit rate reduction of about 30% with the same quality as in H.263 version 2. However, the encoding time is about three times longer because of complex operations. In this thesis, a new architecture for full-search variable-size block-matching motion estimation was proposed. The processing element in PE array can deal with variable block sizes in 7 macroblock types in H.26L. Besides, with the consideration of the dataflow and memory accessing, all components in the architecture can work efficiently. The chip implemented by CIC 0.35 μm 1-Poly 4-Metal CMOS technology works at 60 MHz. The Maximum throughput is 29 frames per second in QCIF format with 5 reference frames and 7 block types at 60 MHz.

Contents
Contents 2
List of Figures 3
List of Tables 4
Chapter 1 Introduction 5
1.1 Video encoding system 6
1.2 Motion estimation architecture 7
1.3 Motion Estimation Algorithms 9
1.4 Thesis organization 11
Chapter 2 Motion Estimation in H.26L 13
2.1 Motion estimation feature in H.26L 14
2.2 Universal Variable Length Coding 15
2.2.1 Bit usage of Motion Vector Data 16
2.2.2 Bit usage of quantization 18
2.3 Performance analysis of H.26L 19
Chapter 3 Previous Works 21
3.1 PE Array Architecture 22
3.2 Data Flow 24
3.3 Control Signal Flow 25
Chapter 4 Full Search and VSBM Motion Estimation Architecture for H.26L 27
4.1 Proposed motion estimation architecture overview 29
4.2 PE Array 30
4.3 Variable block size block-matching accumulator 31
4.4 Comparators 36
4.4.1 Cost function 36
4.4.2 Comparator architecture 38
4.5 Problems of the data path 38
Chapter 5 Memory Access with Dataflow 40
5.1 Data redundancy discussion 40
5.2 On-chip memory 41
Chapter 6 Experimental Results 46
Chapter 7 Conclusions 49
Bibliography 50

[1] ITU-T/SG 16/VCEG (formerly Q.15 now Q.6), “H.26L Test Model Long-Term Number 8 (TML-8)”, July. 2001.
[2] A. Hallapuro et al., ”Performance Analysis of Low Bit Rate H.26L Video Encoder”, Speech, and Signal Processing, 2001. Proceedings. 2001 IEEE International Conference on, Volume: 2 , 2001.
[3] P. Kuhn, “Algorithmic complexity, motion estimation and a VLSI architecture for MPEG-4 motion estimation”, 1999 Kluwer Academic Publishers. Boston.
[4] W. Stechele, “Algorithmic complexity, motion estimation and a VLSI architecture for MPEG-4 core profile video codecs”, VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on, 2001.
[5] M. A. Elgamel, A. M. Shams, “Enhanced low power motion estimation VLSI architectures for video compression”, Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on, Volume: 4, 2001.
[6] J. F. Shen, L. G. Chen, “A novel low-power full-search block-matching motion-estimation design for H.263+”, Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 11 Issue: 7 , July 2001.
[7] P. M. Kuhn, A. Weisgerber, “A flexible VLSI architecture for variable block size segment matching with luminance correction”, Application-Specific Systems, Architectures and Processors, 1997. Proceedings, IEEE International Conference on, 1997.
[8] Y. K. Lai, L. G. Chen, “A flexible high-throughput VLSI architecture with 2-D data-reuse for full-search motion estimation”, Image Processing, 1997. Proceedings., International Conference on , 1997.
[9] S. Dutta, W. Wolf, “A flexible parallel architecture adapted to block-matching motion-estimation algorithms”, Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 6 Issue: 1, Feb. 1996.
[10] S. Dutta, W. Wolf, “A methodology to evaluate memory architecture design tradeoffs for video signal processors”, Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 8 Issue: 1, Feb. 1998.
[11] L. Fanucci, R. Saletti, “High-throughput, low complexity, parametrizable VLSI architecture for full search block matching algorithm for advanced multimedia applications”, Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The 6th IEEE International Conference on, Volume: 3, 1999.
[12] S. H. Nam, M. K. Lee, “High-throughput block-matching VLSI architecture with low memory bandwidth”, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, Volume: 45 Issue: 4, April 1998.
[13] M. akahashi, T. Nishikawa, T, “A scalable MPEG-4 video codec architecture for IMT-2000 multimedia applications”, Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, Volume: 2, 2000.
[14] L. Fanucce, S. Saponara, “IP reuse VLSI architecture for low complexity fast motion estimation in multimedia applications”, 2000 IEEE.
[15] G. Cote, B. Erol. “H.263+: Video coding at low bit rates”, Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 8 Issue: 7 , Nov. 1998.
[16] Joint Video Team (JVT) of ISO/IEC MEPG and ITUT-VCEG, “Joint Model Number 1”, Revision 1(JM 1r1), Doc. JVT-A003r1, Jan. 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top