|
[1] V. Bafna, E.L. Lawler, and P.A. Pevzner. Approximation algorithms for multiple sequence alignment. Theoretical Computer Science, 182:233—244, 1997. [2] W. Bains. Multan: a program to align multiple dna sequences. Mucleic Acids Research, 14:159—177, 1986. [3] G.J. Barton and M.J.E. Sternberg. A stragtegy for the rapid multiple align-ment of protein. Journal of Molecular Biology, 19:327—337, 1987. [4] P. Bonizzoni and G. Della Vedova. The complexity of multiple sequence alignment with SP-score that is a metric. Theoretical Computer Science, 259:63—79, 2001. [5] J. Carlos and J. Meidanis. Introdution to computational molecular biology. PWS publishing company, 1997. [6] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM Journal on Applied Mathematics, 48(5):1073—1082, 1988. [7] S.C. Chan, A.K.C. Wong, and D.K.Y. Chiu. A survey of multiple sequence comparison methods. Bulletin of Mathematical Biology, 48:1073—1082, 1992. [8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, second edition, 2001. [9] F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16:10881—10890, 1988. 25 [10] E. Dekel, J. Hu, and W. Ouyang. An optimal algorithm for finding compact sets. Information Processing Letters, 44:285—289, 1992. [11] D.J.Lipman and S.F.Altschul. A tool for multiple sequences alignment. In Proc.Nat.Acad. Sci. U.S.A., 1989. [12] D.Snakoff. Simultaneous solution of rna folding, alignment and protosequence prolblems. SIAM J. Appl. Math., 1985. [13] J.T. Fang. Constructing and application of evolutionary tree’s measurement model. Master’s thesis, Department of Computer Science National Tsing Hua University, 2000. [14] D.F. Feng and R.F. Doolittle. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution, 25:351—360, 1987. [15] H.N. Gabow and R.E. Tarjan. A linear-time algoritm for a special case of disjoint set union. J. Comput. System Sci., 30:209—221, 1985. [16] G.H. Gonnet, C. Korostensky, and S. Benner. Evaluation measures of multiple sequence alinments. Journal of Computational Biology, 7:261—276, 2000. [17] D. Gusfield. Efficient methods for multiple sequence alignment with guaran-teed error bounds. Bulletin of Mathematical Biology, 55:141—154, 1993. [18] D. Harel and R.E. Tarjan. Fast algorithm for finding nearest common ances-tor. SIAM. J. Comput., 13:285—289, 1984. [19] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks. In Proceedings of the National Academy of Sciences USA, volume 8, pages 1154—1171, 1998. [20] D.G. Higgins and P. Sharpe. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73:237—244, 1988. [21] D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using clustal for multiple sequence alignments. Methods in Enzymology, 266:383—402, 1996. 26 [22] T. Jiang, P. Kearney, and M. Li. A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM. J. Comput., 30:1942—1961, 2001. [23] S.K. Kim. A note on finding compact sets in graphs represented by an adja-cency list. Information Processing Letters, 57:335—338, 1996. [24] M. Li, B. Ma, and L. Wang. Near optimal multiple alignment within a band in polynomial time. In STOC, pages 425—434, Portland, Oregon, 2000. [25] W. H. Li. Molecular Evolution. Sinauer Associates, Inc., 1997. [26] S. Needleman and C. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Evolution, 48:443—453, 1970. [27] P.A. Pevzner. Multiple alignment, communication cost, and graph matching. SIAM Journal on Applied Mathematics, 52:1763—1779, 1992. [28] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406— 425, 1987. [29] B. Schieber and U. Vishkin. On finding lowest common ancestor:simplification and parallelization. SIAM J. Comput., 17:1253—1262, 1988. [30] S.F.Altschul and D.J.Lipman. Trees,star and mutiple biological sequence alig-ment. SIAM J. Appl. Math., 1989. [31] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. J. Comput. System Sci., 13:362—391, 1983. [32] P.H.A. Sneath and R.R. Sokal. Numerical Taxonomy, pages 230—234. Free-man, San Francisco, CA, 1973. [33] R.E. Tarjan. Data Structure and Network Algoritms. SIAM, Philadelphia, PA, 1983. 27 [34] W.R. Taylor. Multiple sequence alignmnet by a pairwise alignment. Computer Applications in Biosciences, 3:81—87, 1987. [35] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Research, 22:4673—4680, 1994. [36] J.D. Thompson, F. Plewinak, and O. Poch. Balibase: a benchmark alignment database for the evolution of multiple sequence alignments. Bioinformatics, 15:87—88, 1999. [37] J.D. Thompson, F. Plewinak, and O. Poch. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res., 27:2682—2690, 1999. [38] T.K. Vintsyuk. Speech discrimination by dynamic programming. Comput., 4:52—57, 1967. [39] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of Computational Biology, 1(4):337—348, 1994. [40] B.Y. Wu. Constructing the maximum consensus tree from rooted. In the proceedings of National Computer Symposium, 2001. [41] D. Zivkovic. A fast algorithm for finding the compact sets. Information Processing Letters, 38:339—342, 1991.
|