臺灣博碩士論文加值系統

(18.204.56.185) 您好！臺灣時間：2022/08/17 14:48

:::

詳目顯示

:

• 被引用:0
• 點閱:224
• 評分:
• 下載:0
• 書目收藏:0
 在這篇論文中,我們提出了一個自動從影像當中找出人臉,並且準確偵測人臉特徵點的方法.利用大量的人臉影像訓練資料,我們可以得到一些統計的資訊:包括了人臉樣板(face templates),人臉特徵點影像的統計模型,以及人臉特徵點相對位置的統計模型.本篇論文包含了兩個主要部分:人臉偵測演算法,以及人臉特徵點選取演算法. 在人臉偵測演算法中,我們先將人臉影像的訓練資料分成幾個類別,並求取每個類別的平均值以得到人臉樣板.然後將求得的這些人臉樣板經過一些2D幾何轉換產生出大量用來搜尋比對人臉的影像資料.我們利用這些影像之間彼此的相似度建立一個階層式的架構,如此測試影像便不需與全部的影像資料比對而達到加速比對的目的. 這篇論文的第二部分是偵測人臉特徵點的演算法,我們所設定要尋找的人臉特徵點包括眼角以及嘴角.透過主成份分析(principal component analysis ,PCA)技巧的運用,可以得到特徵點影像以及人臉特徵點分佈位置的統計模型.我們會先在每個特徵點各自的小範圍搜尋區域內找出最類似眼角(或嘴角)的幾個候選點,然後分析這些特徵候選點的組合是否為合理的人臉特徵點的分佈位置.最後再以權值分析(weighted sum)的方式考慮特徵點影像的相似度以及分佈位置的合理性兩項因素來決定最佳的一組解.
 In this thesis, we propose a novel algorithm to automatically extract facial feature points from image. Our approach is base on the statistical models computed from a large number of training images. There are two parts in this thesis, namely face detection and facial feature points extraction. To extract facial features from images, we have to locate the human face first. Our face detection algorithm is based on the multi-templates matching method. The face templates are computed from the collected face images. A hierarchical nearest neighbor network is applied to store the transformed face templates and it can accelerate the matching process between the test image blocks and face templates. The second part in this thesis is the facial feature points extraction, including the corners of eyes and the corners of mouth. We apply the technique of principal component analysis (PCA) to calculate the statistical models for the feature images and facial configurations. We first locate several candidate feature points in each local area on face. Then we consider each combination of these candidate feature points to see whether it is a reasonable facial configuration. Finally, we use the weighted sum of image similarity measure and face shape approximation error to determine the best combination of the candidate feature points.
 CHAPTER 1. INTRODUCTION CHAPTER 2. REVIEW OF PREVIOUS WORKS 2.1 RELATED WORKS OF FACE DETECTION 2.2 RELATED WORKS OF FACIAL FEATURE EXTRACTION CHAPTER 3. FACE DETECTION ALGORITHM 3.1 TRAINING PHASE 3.1.1 Getting the training face data 3.1.2 Estimating face features 3.1.3 Classifying the feature vector 3.1.4 Hierarchical Nearest Neighbor Network For Face Image 3.1.5 Hierarchical Nearest Neighbor Network For Non-Face Examples 3.2 EXECUTION PHASE CHAPTER 4. FACIAL FEATURES EXTRACTION ALGORITHM 4.1 TRAINING PHASE 4.1.1 Construction of the statistical face shape model 4.1.2 Constructing the local facial feature templates 4.2 EXECUTION PHASE CHAPTER 5. EXPERIMENTAL RESULTS FOR FACE DETECTION ALGORITHM CHAPTER 6. EXPERIMENTAL RESULTS FOR FACIAL FEATURE EXTRACTION ALGORITHM CHAPTER 7. CONCLUSION REFERENCES
 [1] T. F. Cootes, G. J. Edwards, and C. J. Taylor. “Activeappearance model.” In Proc. European Conf. on ComputerVision, volume 2, pages 484-498. Springer, 1998.[2] Ming-Hsuan Yang, David Kriegman, and Narendra Ahuja.Detecting Faces in Images: A Survey.[3] G. Yang and T. S. Huang, “Human face detection in complexbackground,” Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.[4] A. Lanitis, C. J. Taylor, and T. F. Cootes, “An automaticface identification system using flexible appearancemodels,” Image and Vision Computing, vol. 13, no. 5, pp.393-401, 1995.[5] Q. Chen, H. Wu, and M. Yachida, “Face detection by fuzzymatching,” in Proceedings of the International Conferenceon Computer Vision, pp. 591-596, 1995.[6] Haiyuan Wu, T. Yokoyama, D. Pramadihanto, and M. Yachida,“Face and facial feature extraction from color image,” inProceedings of the Second International Conference onAutomatic Face and Gesture Recognition, pp.345-350, 1996.[7] J. Sobottka and I. Pitas, “Segmentation and tracking offaces in color images,” in Proceedings of the SecondInternational Conference on Automatic Face and GestureRecognition, pp. 236-241, 1996.[8] Alan L. Yuille, Peter W. Hallinan, and David S. Cohen.“Feature Extraction from Faces Using DeformableTemplates.” International Journal of Computer Vision, 8:2,pages 99-111, 1992.[9] T. F. Cootes, G. J. Edwards, and C. J. Taylor. “Activeappearance models,” IEEE Trans. on Pattern Recognition andMachine Intelligence, 23(6):681-685, 2001.[10] Mikkel B. Stegmann. “Object Tracking Using Statisticalmodels of Appearance.” Tech Report. Informatics andMathematical Modeling, Technical University of Denmark.[11] M. B. Stegmann, R. Fisker, B. K. Ersboll, H. H. Thodberg,and L. Hyldstrup. “Active Appearance Models: Theory andCases.” Tech. Report. Department of Mathematical Modeling,Technical University of Denmark.[12] S.-H. Lai and M. Fang, "Robust and efficient imagealignment with spatially-varying illumination models'',Proceedings of IEEE Conference on Computer Vision & PatternRecognition, Vol. 2, pp. 167-172, Fort Collins, Colorado,June 23-25, 1999.[13] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham.“Active Shape Models-Their Training and Application.”Computer Vision and Image Understanding, Vol. 61, No. 1,January, pp. 38-59, 1995.[14] Matthew Turk and Alex Pentland. “Eigenfaces forRecognition.” Vision and Modeling Group, The MediaLaboratory, Massachusetts Institute of Technology.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 自動化臉部表情分析系統 2 一個以膚色為基礎之互補人臉偵測策略 3 即時人臉偵測系統 4 結合膚色區域分割與主要成份分析於多人臉部辨識 5 頭部姿勢辨識應用於游標與機器人之控制 6 即時人臉辨識系統之研製 7 一個從影像序列中擷取臉部特徵點的人臉表情辨識系統 8 運用網路攝影機進行自動化人臉特徵擷取 9 影像中人臉偵測之研究 10 即時視向偵測及滑鼠游標控制系統 11 結合支向機技術發展之自動人臉辨識系統 12 複雜環境下之即時人臉偵測與辨識系統 13 以頭部姿勢辨識應用於家電與足型機器人之研究 14 利用基因演算法分割與主值成份分析於人臉辨識 15 自動化人臉偵測與特徵擷取系統

 1 史尚寬 論名譽權侵害與誹謗罪，軍法專刊2卷4期，民國42年4月 2 王皇玉 德國法上關於愛滋病傳染問題之刑法評價，月旦法學73期，2001年6月 3 法治斌 保障言論自由的遲來正義–評司法院大法官釋字第509號，月旦法學65期，2000年10月 4 柯耀程 AIDS傳染的刑法問題，月旦法學7期，民國84年11月 5 薛智仁 聚眾鬥毆罪之研究，刑事法雜誌44卷4期，民國89年8月

 1 運用統計方法與人工智慧技術建構整合性投資策略 2 從影像中偵測物體的新演算法 3 以統計數據為基礎的車牌影像處理與辨識方法 4 台灣地區颱風降雨量預測之統計方法探討及校驗 5 大量資料計算基本統計量之一個簡單程序 6 統計方法應用於航空業顧客滿意度模式 7 以不同統計模型分析基因型與環境交感效應之研究 8 以二維稠密卷積網路完成三維點雲的語義分割 9 基於時間特徵融合之連續影像物件偵測 10 多尺度型生成對抗網路於視頻解模糊 11 基於人體姿勢動態歷史的多個體動作以及群體活動辨識 12 基於深度網路使用長方體模型的房間二維及三維結構估測 13 基於多個變形邊界框的人體動作模型重建 14 以基於視線追蹤之機器翻譯呈現及語句對應輔助第二外語閱讀 15 基於深度學習的臉部表情辨識系統

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室