跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林雅婷
研究生(外文):Ya-Tin Lin
論文名稱:利用醯亞胺水解酵素家族成員交叉參考投票,尋找老鼠醯亞胺水解酵素上關鍵性的候選者
論文名稱(外文):Finding Critical Residue Candidates of Rat Imidase by Cross-Reference Voting in Imidase Superfamily
指導教授:唐傳義
指導教授(外文):Chuan Yi Tang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:25
中文關鍵詞:X-ray結晶繞射核磁共震演算法老鼠醯亞胺水解酵素交叉參考的技巧
外文關鍵詞:X-ray crystallographyNMR spectroscopyheuristic algorithmrat imidasecross-reference skillhomology modeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在後基因體時代,了解蛋白質如何運作已被熱切的研究,以利更進一步探索人體的奧秘。很多現有的工具用來分析蛋白質的結構與功能,例如,X-ray結晶繞射、核磁共震等,但這些工具對蛋白質都有某些條件限制,使得這些蛋白質無法順利被研究。因此,本篇論文提出一個演算法可以提供具有關鍵性的胺基酸候選者。首先,我們選擇老鼠身體上的醯亞胺水解酵素作為研究標的物以及利用醯亞胺水解酵素家族作為輔助研究資料。然後將此家族成員依據功能分成不同的族群。然後,將每群內的序列對齊好後,各族群間再利用功能的特性,進一步交叉參考在老鼠醯亞胺水解酵素上的每個胺基酸共同投票。最後,得票越高者越有可能成為有功能的候選者。
在這篇研究中,將會介紹醯亞胺水解酵素與其家族成員,了解這些蛋白質到目前為止已被發現的生物資訊,在我們的研究中加以利用,進一步獲的更多的功能與結構資訊。第三節詳細描述我們提出的演算法,以及範例提供參考。最後,在第四節的結果討論中,我們可預測具有關鍵性的胺基酸候選者,從519個胺基酸中,排除較不可能有功能的胺基酸,篩選出98個候選者,此外,將結果與發表的資料比對,更證實結果的可信度。這些資訊可以幫助生物學家節省時間、金錢、人力資源、實驗次數,也是此演算法的貢獻。

Abstract
Realizing how proteins work has been eagerly studied to discover the secret of human body in post genome era. Several well-development tools such as X-ray crystallography, NMR spectroscopy, or homology modeling etc., analyzing protein structure and function have limitation. Therefore, in this paper we propose a heuristic algorithm that can suggest the possible functional residues for studying further. At first, we choose rat imidase as our interesting target protein and imdase superfamily as assistant data. Then, we classify the imidase superfamily into distinct groups according to its function. Moreover, each group aligned uses cross-reference skill to vote residues of rat imidase. Eventually, higher scores correspond to higher possible critical residue candidates.
In this study, we predict the critical residue candidates of rat imidase, and reduce the number of residues from 519 to 98. This is helpful to biologists, and they can save their time, money, labor and experimental times. This is the contribution of our algorithm.

1. Introduction 1
2. Preliminaries 3
2.1 Imidase ……………..……………………………… 3
2.2 Imidase Superfamily….…………………………… 4
2.3 Classification………….………………………… 5
3. Algorithm 9
4. Experiment Results and Discussion 15
5. Conclusion 22
Bibliography 23

[1.] Wallach, D.P., and Grisolia, S. (1957) J. Biol. Chem. 226, 277-288.
[2.] Brooks, K. P., Jones, E. A., Kim, B. D., and Sander, E. B. (1983) Arch.
Biochem.Biophys. 226, 469-483.
[3.] Lee, M. H., Pettigrew, D.W., Sander, E. G., and Nowak, T. (1987) Arch.
B iochem.Biophys. 259, 597-604.
[4.] Jakoby, W. B., and Ziegler, D. M. (1990) J. Biol. Chem. 265, 20715-20718.
[5.] Yang, Y.-S., Ramaswamy, S., and Jakoby, W. B. (1993) J. Biol. Chem. 268,
10870-10875.
[6.] Jahnke, K., Podschun, B., Schnackerz, K. D., Kautz, J., and Cook, P. F. (1993)
Biochemistry 32, 5160-5166.
[7] D. Gusfield. Efficient methods for multiple sequence align-ment with guaranteed error bounds. Bulletin of Mathemati-cal Biology, 55:141—154, 1993.
[8.] Lee, S.-G., Lee, D.-C., Hong, S.-P., Sung, M.-H., and Kim H.-S. (1995) Appl.
Microbiol. Biotechnol. 43, 270-276
[9.] Ogawa, J., Kim, J. M., Nirdonoy, W., Amano, Y., Tamada, H., and Shimizu, S.(1995) Eur. J. Biochem. 229, 284-290.
[10.] Matsuda, K., Sakata, S., Kaneko, M., Hamajima, N., Nonaka, M., Sasaki, M., and Tamaki, N. (1996) Biochim. Biophys. Acta 1307, 140-144.
[11.] Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., Sasaki, M., and Nonaka, N.(1996) Gene 180, 157-163.
[12.] Ogawa, J., Soong, C.-L., Honda, M., and Shimizu, S. (1997) Eur. J. Biochem.
243,322-327.
[13.] Yang, Y.-L., Ramaswamy, S., and Jakoby, W. B. (1998) J. Biol. Chem. 273,
7814-7817
[14.] Kim, S. J., and Kim, H. S. (1998) Biochem J. 330, 295-302.
[15.] Christianson, D. W., and Cox, J. D. (1999) Annu. Res. Biochem. 68, 33-57
[16.] Su, T.-M., and Yang, Y.-S. (2000) Protein Expr. Purifi. 19, 289-297.
[17.] D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. Journal Molecular Evolution, 25:351—360, 1987.
[18 ] Laxmi Parida .Aris Floratos Isidore Rigoutsos. An Approximation Algorithm
for Alignment of Mulitple Sequences using Motif Discovery. Computational
Biology Center
[19] PIR(Protein Information Resource) http://pir.georgetown.edu
National biomedical Research Foundation of USA
[20 ] Olivier Lichtarge , Henry R. Bourne and Fred E.Cohen. An Evolutionary Trace Method Defines Binding Surfaces Common to Protein Families. JMB, 342-358, 1996

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top