|
[1] R. Mahnkopf et al., “ ‘System on a chip’ technology for 0.18 μm digital, mixed signal & eDRAM applications,” in IEDM Tech. Dig., 1999, pp. 849—851. [2] L. S. Wang et al., “Characterization of CF4 Plasma Induced Damage During Dry Ashing and Residue Removal Process,” in Plasma-Process Induced Damage conference proceedings, pp.29-32, 2001. [3] D. K. Schroder, Semiconductor Material and Device Characterization, New York: Wiely, 1998, pp.683-697. [4] D. K. Schroder, Semiconductor Material and Device Characterization, New York: Wiely, 1998, pp.351-350. [5] C. Hu. et.al. “ Hot-electron induced MOSFET degradation model, monitor and improvement,” IEEE Trans. Electron Devices, vol. ED-32, pp. 375-385, 1985 [6] D. K. Schroder, Semiconductor Material and Device Characterization, New York: Wiely, 1998, pp.379-385. [7] D. K. Schroder, Advanced MOS Devices, Addison-Wesley, 1987, Ch.2. [8] B. Deal et al., “Characteristics of the surface state charge of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, no. 3, pp. 266—274, 1967. [9] A. Goetzberger et al., “On the formation of surface states during stress aging of thermal Si-SiO2 interfaces,” J. Electrochem. Soc., vol. 120, no. 1, pp. 90—96, 1973. [10] C. Blat et al., “Mechanism of negative-bias-temperature instability,” J .Appl. Phys., vol. 69, no. 3, pp. 1712—1720, 1991. [11] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO2 (4—6 nm)-Si interfaces during negative-bias temperature aging,” J. Appl. Phys., vol. 77, no. 3, pp. 1137—1148, 1995. [12] K. Sasada et al., “The influence of SiN films on negative bias temperature instability and characteristics in MOSFET’s,” in Proc. Conf. Micro-electric Test Structures, vol. 11, Kanazawa, Japan, 1998, pp. 207—210. [13] Y. Shioya et al.,"Analysis of stress in chemical vapor desposition tungsten silicide film," J. Appl. Phys., vol. 58, pp.4194-4199, Dec., 1985 [14] M. D. Deal et al.,"Tungsten silicide/n+ polysilicon technology for VLSI," in proc. VLSI Multilevel Interconnections Conf., June 1985,pp.324-334 [15] P. Wright et al., “Hot-electron immunity of SiO2 dielectrics with fluo-rine incorporation,” IEEE Electron Device Lett., vol. 10, pp. 347—348, Aug. 1989. [16] T. Nakanishi et al., “Instability of SiO2 film caused by fluorine and chlo-rine,”Jpn. J. Appl. Phys., vol. 37, no. 8, pp. 4316—4320, 1998. [17] M. Cao et al., “Boron diffusion and penetration in ultrathin oxide with Poly-Si gate,” IEEE Electron Device Lett., vol. 19, pp. 291—293, Aug. 1998. [18] H. Vuong et al., “Influence of fluorine implant on boron diffusion: De-termination of process modeling parameters,” J. Appl. Phys., vol. 77, no.7, pp. 3056—3060, 1995. [19] L. Wang et al., “The influence on boron-enhanced diffusion in silicon by BF + implantation through oxide during high temperature rapid thermal anneal,” J. Electrochem. Soc., vol. 144, no. 11, pp. L298—L301, 1997. [20] P. Wright and K. Saraswat, “The effect of fluorine in silicon dioxide gate dielectrics,” IEEE Trans. Electron Devices, vol. 36, pp. 879—889, 1989 [21] J. Y. Tsai et al., “Slight gate oxide thickness increase in PMOS devices with BF implanted polysilicon gate,” IEEE Electron Device Lett., vol. 19, pp. 348—350, Feb. 1998. [22] E. H. Nicollian and J.R. Brews, MOS Physics and Technology. New York: Wiely, 1982, pp.824. [23] P. Chowdhury et al., “Improvement of ultrathin gate oxide and oxyni-tride integrity using fluorine implantation technique,” Appl. Phys. Lett., vol. 70, no. 1, pp. 37—39, 1997. [24] T. Hook, D. Harmon, and C. Lin, “The detection of charging with rapid-ramp breakdown in a dual (3.5 nm/6.8 nm) oxide technology,” in Proc. Int. Reliability Physics Symp., 2000, pp. 377—388. [25] C. C. Chen et al., “Improved Plasma Charging Immunity In Ultra-Thin Gate Oxide with Fluorine and Nitrogen Implantation,” Plasma-Process Induced Damage conference proceedings, pp.121-124, 2000. [26] T. B. Hook et al., “The Effects of Fluorine on Parametrics and Reliability in a 0.18-μm 3.5/6.8 nm Dual Gate Oxide CMOS Technology”, IEEE Trans. Electron Devices, vol. 48, No. 7,pp. 1346—1353, Jul. 2001. [27] E. da Silva, Y. Nishioka, Y. Wang, and T. Ma, “Dramatic improvement of hot-carrier-induced interface degradation in MOS structures containing F or Cl in SiO2 ,” IEEE Electron Device Lett., vol. 9, pp. 38—40, Jan. 1988. [28] T. Ma, “Metal-oxide-semiconductor gate oxide reliability and the role of fluorine,” J. Vac. Sci. Technol. A, vol. 10, no. 4, pp. 469—471, 1992. [29] T. Lo, W. Ting, D. Kwong, J. Kuehne, and C. Magee, “MOS characteristics of fluorinated gate dielectrics grown by rapid thermal processing in O with diluted NF ,” IEEE Electron Device Lett., vol. 11, pp. 511—513, Nov. 1990. [30] L. Vishnubhotla et al., “Mobility and reliability improvements of fluori-nated gate oxide for VLSI technology,” in Proceedings of the Int. Symp. on VLSI Technol., Sys., and Appl., 1995, pp. 44—48. [31] T. Ma, “Metal-oxide-semiconductor gate oxide reliability and the role of fluorine,” J. Vac. Sci. Technol. A., vol. 10, pp. 469—471, 1992. [32] V. Afanas’ev et al., “Necessity of hydrogen for activation of implanted fluorine in Si/SiO structures,” Appl. Phys. Lett., vol. 63, no. 21, pp. 2949—2951, 1993. [33] M. Yoshimaru et al., “Interaction between water and fluorine-doped sil-icon oxide film deposited by PECVD,” in Proc. Int. Reliability Physics Symp., Denver, CO, 1997, pp. 234—241. [34] V. Afanas’ev et al., “Elimination of hydrogen-related instabilities in Si/SiO structures by fluorine implantation,” J. Appl. Phys., vol. 76, no. 12, pp. 7990—7997, 1994. [35] J. Lyding et al., “Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing,” Appl. Phys. Lett., vol. 68, no. 18, pp. 2526—2528, 1996. [36] D. K. Schroder, Semiconductor Material and Device Characterization, New York: Wiely, 1998, pp.245 [37] J. L. Benton et al., Diagnostic Technologies for semiconductor Materials and Devices, Electrochem. Soc., Pennington, NJ, 1992, 261-274 [38] D. K. Schroder, Semiconductor Material and Device Characterization, New York: Wiely, 1998, pp.391 [39] E. Takeda et al., Hot Carrier Effects in MOS Devices, Academic Press, San Diego, 1995 [40] J. S. Brugler et al.,”Charge Pumping in MOS Devices”, IEEE Trans. Electron Dev. ED-16, 297-302, March 1969. [41] G. Groeseneken et al., “A Reliable Approach to Charge Pumping Measurement in MOS Transistor”, IEEE Trans. Electron Dev. ED-31, 42-53, Jan 1984. [42] W. L. Tseng, “A new Charge Pumping Method of Measuring Si-SiO2 Interface States”, J. Appl. Phys. 62,591-599, July 1987. [43] N. S. Saks et al., “Determination of Interface Trap Capture Cross Sections Using Three-Level Charge Pumping”, IEEE Electron Dev. Lett. 11, 339-341, Aug. 1990. [44] D. K. Schroder, Semiconductor Material and Device Characterization, New York: Wiely, 1998, pp. 471
|