跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李幸茸
研究生(外文):Sing-Rong , Li
論文名稱:含導通閘之光二極體互補式金氧半影像感測元件之光響應研究
論文名稱(外文):Study on Photoresponse in 4-T Photodiode-type CMOS Imager
指導教授:金雅琴
指導教授(外文):Ya-Chin, King
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:63
中文關鍵詞:光二極體互補式金氧半影像感測元件導通閘高靈敏度動態範圍重置雜訊
外文關鍵詞:CMOS Image Sensortransfer gatehigh sensitivitydynamic rangereset noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文透過實驗與模擬來探討影響含導通閘之光二極體互補式金氧半影像感測元件(4-T photodiode-type CMOS Imager)光響應的因素,分別為(1)讀取端二極體面積之大小、(2)感測端二極體面積與讀取端二極體面積大小的比值以及(3)訊號讀取操作方式之設計。此外,本文也仔細探討導通閘的工作原理,以便更了解此影像感測元件的操作方式。含導通閘之光二極體互補式金氧半影像感測元件的優點有:可消除重置雜訊且維持一般影像訊號的讀取速度、透過將光電子傳導到一個較小的電容可以得到較高的電荷轉換電壓增益,因此可以得到較高的靈敏度。然而,對一影像感測元件而言,想要同時具有高靈敏度和高動態範圍的特性是困難的。所以我們提出一個新的訊號讀取操作方式以提高此感測元件的動態範圍同時也能保持在低照度時的高靈敏度特性,藉以改善影像感測器在低照度下的應用範圍。實驗結果發現讀取端二極體面積越小則靈敏度越高,但同時暗電流也提了。因此讀取端二極體面積不可任意縮小,應考慮製程的影響來設計以獲取最大的輸出訊號和靈敏度。訊號讀取操作方式之設計以當導通閘對感測端二極體重置時所加的電壓等於傳導光電子到輸出端電容時所加的電壓相同為最好的選擇。新的訊號讀取操作方式的確可以增加感測元件的動態範圍並維持低照度時高靈敏度的特性。

In this dissertation, some factors that influence the performance of 4-T photodiode type CMOS imagers are studied through experiments and simulations. High sensitivity of this imager can be achieved by carefully designing the area of readout diode, area ratio of sensing diode to readout diode and the readout scheme. However, tradeoff between sensitivity and dynamic range in this imager is inevitable. We then propose a new readout scheme to extend the maximum non-saturating input signal at high light intensity while maintaining the high sensitivity performance at low light intensity. Experimental results show that high sensitivity can be obtained with a small readout diode area at the cost of large dark signals. In addition, the newly proposed readout scheme achieves good performances of both high sensitivity at low light intensity and extended dynamic range.

ABSTRACT………………………………………….……….........ii
ACKNOWLEDGEMENT……….………………………….……….. .iv
LIST OF CONTENTS…………….……………………………… ..v
LIST OF FIGURES………………………………………………. vii
LIST OF TABLES………………………………………………… .ix
CHAPTER ONE Introduction………………….……………….. ..1
CHAPTER TWO Basic Concepts and Operation of CMOS APS…..3
2.1 CMOS Imagers…………………..………........ ..3
2.1.1 3-T Photodiode-Type APS……………………………… ..3
2.1.2 Photogate-Type APS……………………………………. ..4
2.1.3 5-T Photodiode-Type APS…………………………… ..5
2.1.4 Pinned Photodiode-Type APS…………………………… ..5
2.2 Noise Sources in a CMOS imager sensor……………. ..6
2.2.1 Random Noise……………………………………….. ..6
2.2.2 Pattern Noise…………………………………………. ..7
2.2.3 Solutions for Noise Reduction……………………… ..8
2.3 Motivation……………………………………... ...........8
CHAPTER THREE Pixel Structure and Operation ……… … 19
3.1 Pixel Structure and Operation…………………………. 19
3.2 Introduction to Performance Parameters……………… 20
CHAPTER FOUR Experimental Design and Setup….……….. 23
4.1 Areas of Readout Diode………………………… 23
4.2 TX Pulse Function………………………………………… 23
4.3 Measurement System……………………………………….. 24
CHAPTER FIVE Results and Discussions…………………. 29
5.1 Design of Readout Diode Areas….………...…….…. 29
5.2 Design of TX Timing Diagram………………………... 30
5.2.1 Operation Principles of Transfer Gate…………… 30
5.2.2 Pulse Level Design……………………………….. 31
5.2.3 Constant TX bias…….………………………………... 33
5.3 Dynamic Range of 4-T Cell…………………………. 34
5.4 New Readout Scheme………………………………….. 35
CHAPTER SIX Conclusion…………………………………….. 61
REFERENCES………………………………………………………. 62

[1] E. Fossum, ”Active pixel image sensors-Are CCD’s dinosaurs?,” Proc. SPIE, vol. 1900, pp. 2-14, Feb. 1993.
[2] E. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices, vol. 44, pp.1689-1698, Oct. 1997.
[3] B. Ackland and A. Dickinson, “Camera-on-a-chip,” ISSCCD Tech. Papers, pp. 22-25, 1996
[4] K. Yonemoto et al., A CMOS image sensor with a simple FPN-reduction technology and a hole-accumulated diode,” IEEE ISSCCD Tech. Dig., vol. 43, pp.102-103, 2000.
[5] R. M. Guidash et al., ”A 0.6um CMOS pinned photodiode color imager technology,” IEDM Tech. Dig., pp.927, 997.
[6] H.-S. Wong et al., ”CMOS active pixel image sensors fabricated using a 1.8-V, 0.25-um CMOS technology,” IEEE Trans. Electron Devides, vol. 45, pp. 889, Apr. 1998.
[7] S. Decker, R. McGrath, K. Brehmer, and C. Sodini, ”A 256x256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output,” IEEE ISSCC Dig. Tech. Papers, pp. 176, 1998.
[8] S. Mendis, A. J. Budrys, J. Lin, and K. Cham, ”Active pixel image sensor in 0.35 um CMOS technology,” IEEE Workshop on Charge-Coupled Devides and Advanced Image Sensors, pp. R21-1, 1997.
[9] E. Fossum, ” CMOS image sensors combat noise,” articles from EE TIMES, May 2002
[10] B. C. Burkey at al., ”The pinned photodiode for an interline-transfer CCD image sensor,” IEDM Tech. Dig., pp. 28, 1984.
[11] P. Noble, “Self-scanned silicon image detector arrays,” IEEE Trans. Electron Devices, vol. ED-15, pp.202-209, Apr. 1968.
[12] S. Mendis, S. Kemeny, and E. R. Fossum, “A 128x128 CMOS active pixel image sensor for highly integrated imaging systems,” IEEE IEDM Tech. Dig., pp. 583-586, 1993.
[13] _____, “CMOS active pixel image sensor,” IEEE Trans. Electron Devices, vol. 41, pp.452-453, Mar. 1994.
[14] S. K. Mendis, S. E. kemeny, R. C. Gee, B.Pain, Q. Kim, and E.R. Fossum, ”CMOS active pixel image sensors for highly integrated imaging systems” IEEE J. Solid-State Circuits, vol. 32, pp. 187-197, Feb.1997.
[15] Mikio Kyomasu, ”A new MOS imager using photodiode as current source,” IEEE J. Solid-State Circuits, vol. 26, no. 8, pp.1116-1122, Aug. 1991.
[16] E.C. Fox et al., “A high speed linear CCD sensor with pinned photodiode photosite for low lag and low noise imaging,” Proc. SPIE, vol. 3301, pp. 17, 1998
[17] N. Teranishi et al., “No image lag photodiode structure in the interline CCD image sensor,” IEDM Tech. Dig., pp. 324, 1982.
[18] H.W. Ott (1988), “Noise reduction techniques in electronic systems”, Wiley
[19] G.C. Holst (1996), “CCD Arrays, cameras and displays”, SPIE Press
[20] Hui Tian, Boyd Fowler and A.E. Gamal, “Analysis of Temporal Noise in CMOS photodiode active pixel sensors, ” IEEE J. Solid-State Circuits, vol. 36 , pp. 92 -101, Jan. 2001
[21] R.I. Hornsey, University of Waterloo, lectures of “Noise in image sensors.”
[22] Satomi Ogawa et al.,”A Switched-Capacitor Interface for Differential Capacitance Transducers,” IEEE Trans. Instrumentation and Measurement, vol. 50, no. 5, Oct. 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊