跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張賢鈞
研究生(外文):Chang Hsien-Chun
論文名稱:高填滿係數自我增益型主動式影像感測器與可調整式注入電流補償架構之研究
論文名稱(外文):Tunable Injection Current Compensation Architecture for High Fill-factor Self-buffered Active Pixel Sensor
指導教授:金雅琴
指導教授(外文):King Ya-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:106
中文關鍵詞:互補式金氧半影像感測器填滿係數動態範圍主動式影像感測器
外文關鍵詞:CMOS Image SensorFill-factorDynamic RangeActive Pixel Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,互補式金氧半影像感測器受到相當多的重視,因為相較於傳統的電荷耦合元件,互補式金氧半影像感測器具有低功率消耗、低成本、可隨機存取、以及可以和成熟且普及的互補式金氧半相同等特點。在目前影像感測應用與電子產品普及的今天,低價且與周邊電路整合性高的互補式金氧半影像感測器便成為重要的研究重點。
然而隨著製程的演進與元件尺寸的不斷縮小,互補式金氧半影像感測器的特性將會受到影響而變差。針對此問題,本論文提出一種新型具高填滿係數的主動式金氧半影像感測器結構,以及一個新的電路架構來改善感測器在先進製程中的表現。
新型元件稱為自我增強主動式影像感側器,其結構僅由一個PMOS電晶體和一個重置二極體所構成,並利用作為PMOS電晶體之基體的N型井以及P型基板來構成感光二極體。相較於傳統採用源汲區作為光二極體的主動式影像感測器,新型感測器具有較好的元件特性,尤其是應用在先進製程時;由模擬和實驗結果可以得知,在0.25μm的製程中,新型影像感側元件可以達到55%的高填滿係數、3.4V/lux-sec 的良好靈敏度、以及2.2伏特的高輸出範圍。
新式電路架構稱為可調整式注入電流補償架構,除了可以提高影像感測器的動態範圍外,並允許元件的輸出特性可以依照不同的應用與需求進行調整。由模擬和實驗結果可以知道,在良好的電路實現下,採用新式架構的影像感側器可增加將近40dB的動態範圍。有關新型影像感側元件與電路架構的設計考量與實驗結果,在本論文中都有詳盡的介紹與討論。

A high fill-factor self-buffered active pixel sensor and a tunable injection current compensation architecture for high dynamic range imager is proposed for scaled standard CMOS technology. The new cell including a photo diode formed by n-well and p-type substrate and an one-transistor output buffer shows better performance than conventional APS. Novel imager can achieve fill-factor of 55%, sensitivity of 3.4V/sec-lux, and large output swing 2.2V at VDD=3.3V for 0.25μm CMOS technology. Tunable injection current compensation architecture can improve dynamic range by as much as 40dB and can be tailored design to meet various application specifications. Dynamic range of up to 120dB is projected by simulation results. Experimental results of the new structure and simulated design of the circuit are discussed in this thesis.

LIST OF CONTENTS
ABSTRACT (ENGLISH) …………………………………………… i
ABSTRACT (CHINESE) …………………………………………… ii
ACKNOWLEDGEMENT ………………………………………………… iii
LIST OF CONTENTS ……………………………………………… iv
LIST OF FIGURES ………………………………………………… vi
LIST OF TABLES ………………………………………………… ix
CHAPTER1 INTRODUCTION
1.1 Background ………………………………………………… 1
1.2 Motivation ………………………………………………… 3
1.3 Organization ……………………………………………… 5
CHAPTER2 REVIEW OF CMOS IMAGE SENSORS
2.1 The CMOS Image Sensor …………………………………… 7
2.1.1 Passive Pixel Sensor ………………………………… 7
2.1.2 Active Pixel Sensor …………………………………… 8
2.1.3 Comparison of APS and PPS …………………………… 12
2.2 Image Sensor Characteristics ………………………… 13
2.3 Sensor Architecture and Readout Techniques ……… 15
2.3.1 Sensor Architecture …………………………………… 15
2.3.2 Readout Techniques …………………………………… 17
CHAPTER3 ACTIVE PIXEL SENSOR PERFORMANCE WITH PROCESS AND DEVICE SCALING TREND
3.1 Technology Scaling Trend and CMOS APS ……………… 27
3.1.1 Technology Scaling Trend …………………………… 27
3.1.2 Sensor Performance Trend …………………………… 30
3.2 Techniques for Imager Performance Improvement …… 31
3.2.1 Advanced CMOS Imager Techniques …………………… 32
3.2.2 N-well/P-sub Photodiode APS ………………………… 33
CHAPTER4 HIGH FILL-FACTOR SELF-BUFFERED APS
4.1 High Fill-factor Self-buffered Active Pixel Sensor 35
4.2 The Performance of the Novel Active Pixel Sensor… 37
4.3 Design Considerations and Trade-offs ……………… 39
CHAPTER5 TUNABLE INJECTION CURRENT COMPENSATION ARCHITECTURE FOR HIGH DYNAMIC RANGE
5.1 High Dynamic Range Approach …………………………… 50
5.2 Tunable Injection Current Compensation Architecture 52
5.3 Design Considerations and Optimization …………… 54
5.4 Summary ……………………………………………………… 57
CHAPTER6 EXPERIMENTAL RESULTS
6.1 Test-key Design and Measurement Setup ……………… 71
6.1.1 Test-key Design ………………………………………… 71
6.1.2 Measurement System ……………………………………… 71
6.1.3 Measurement Setup ……………………………………… 72
6.2 Experimental Results……………………………………… 73
6.2.1 Discussions for Experimental Results ……………… 73
6.2.2 Other Measurement Results …………………………… 75
6.2.3 Summary …………………………………………………… 75
CHAPTER7 CONCLUSIONS AND FUTURE WORKS
7.1 Conclusions ………………………………………………… 84
7.2 Future Works ……………………………………………… 85
REFERENCE ………………………………………………………… 94

[1] R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, and E.R. Fossum, “256x256 CMOS Active Pixel Sensor Camera-on-a-Chip,” IEEE Journal of Solide-State Circuits, Vol.31, pp.2046-2050, Dec.1996.
[2] B. Ackland and A. Dickinson, “Camera on a Chip,” ISSCC, Digest of Technical Papers, pp.22-25, 412, IEEE International, 1996.
[3] E. Goujou, J. Mitern, and O. Laligant, “A Low Cost and Intelligent Video Survellance System,” Proceedings of the IEEE International Symposium on Industrial Electronics, Vol.1, pp.405-409, July 1995.
[4] B. Bhanu, R. Nevatia, and E.M. Riseman, “Dynamic-Scene and Motion Analysis Using Passive Sensors,” IEEE Expert, Vol.7, pp.45-52, Feb. 1992.
[5] S. Smith, J. Hurwitz, M. Torrie, D. Baxter, A. Holmes, M. Panaghiston, R. Henderson, A. Murray, S. Anderson, and P. Denyer, “A Single-Chip 306x244-Pixel CMOS NTSC Video Camera,” ISSCC Digest of Technical Papers, pp.170-171, Feb. 1998.
[6] E.R. Fossum, “CMOS Image Sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices, Vol.44, pp.1689-1698, Oct. 2001.
[7] D.F. Barbe, “Imaging Devices Using the Charge-Coupled Concept,” Proceedings of the IEEE, Vol.63, No.1, pp.38-66, Jan. 1975.
[8] L.J. Kozlowski, J. Luo, and A. Tomasini, “Performance Limits in Visible and Infrared Image Sensors,” IEDM Technical Digest. International, 1999.
[9] H.-S. Wong, “Technology and Device Scaling Considerations for CMOS Imagers,” IEEE Trans. Electron Devices, Vol.43, pp.2131-2142, Dec. 1996.
[10] J. Hynecek, “A New Device Architecture Suitable for High-resolution and High Performance Image Sensors,” IEEE Trans. Electron, Devices, Vol.35, pp.646- , 1998.
[11] E.R. Fossum, “Active Pixel Sensors: Are CCD Dinosaurs?,” Proc. SPIE, Vol.1900, pp.2- , 1993.
[12] H.-S. Wong and W. Yang, “From Photons to Bits — Is Electronic Imaging at a Watershed?,” Int. Solid-State Circuits Conference, pp.108- , 1996.
[13] M. Yamawaki, H. Kawashima, N. Murata, F. Andoh, M. Sugawara, and Y. Fujita, “Pixel Size Shrinkage of Amplified MOS Imager with Two-Line Mixing,” IEEE Trans. Electron Devices, Vol.43, p.713, May 1996.
[14] O. Yadid-Pecht, B. Mansoorian, E.R. Fossum, and B. Pain, “Optimization of Noise in CMOS Active Pixel Sensors for Detection of Ultra Low Light Levels,” Proc. SPIE, Vol.3019, p.125, 1997.
[15] N. Ricquier and B. Dierickx, “Pixel Structure with Logarithmic Response for Intelligent and Flexible Imager Architectures,” ESSDERC’92; Microelectron. Eng., Vol.19, pp.631-634, 1992.
[16] Y.C. Shih and C.Y. Wu, “The Design of High-Performance 128x128 CMOS Image Sensor Using New Current-Readout Techniques,” Circuits and Systems, ISCAS’99, IEEE International Symposium on, Vol.5, 1999.
[17] T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Seibel, Micheal Sommer, and M. Böhm, “Sensitivity of CMOS Based Imagers and Scaling Perspectives,” IEEE Trans. Electron Devices, Vol.47, No.11, pp.2110-2122, Nov. 2000.
[18] S.K. Mendis, S.E. Kemeny, R.C. Gee, B. Pain, C.O. Staller, Q. Kim, and E.R. Fossum, “CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems,” IEEE Journal of Solid-State Circuits, Vol.32, No.2 Feb. 1997.
[19] D.X.D. Yang, A. El Gamal, B. Fowler, and H. Tian, “ A 640x512 CMOS Image Sensor with Ultrawide Dynamic Range Floating-point Pixel-level ADC,” IEEE Journal of Solid-State Circuits, Vol.34, pp.1821-1834, Dec. 1999.
[20] Lisa G. McIlrath, “A Low-Power Low-Noise Ultrawide-Dynamic-Range CMOS Imager with Pixel-Parrallel A/D Conversion,” IEEE Journal of Solid-State Circuits, Vol.36, pp.846-853, May 2001.
[21] H.S. Philip Wong, “CMOS Image Sensors — Recent Advances and Device Scaling Considerations,” Electron Devices Meeting, Technical Digest, Int., 1997.
[22] D.N. Yaung, S.G. Wuu, Y.K. Fang, C.S. Wang, C.H. Tseng, and M.S. Liang, “Non-silicide Source/Drain Pixel for 0.25μm CMOS Image Sensor,” IEEE Electron Device Letters, Vol.22, pp.71-73, Feb. 2001.
[23] R.H. Dyck and G.P. Weckler, “Integrated Arrays of Silicon Photodetectors for Image Sensing,” IEEE Trans. Electron Devices, Vol. ED-15, p.196, Apr. 1968.
[24] P. Noble, “Self-scanned Silicon Image Detector Arrays,” IEEE Trans. Electron Devices, Vol. ED-15, p.202, Apr. 1968.
[25] H.M. Wey and W. Guggenbuhl, “An Improved Correlated Double Sampling Circuit for Low Noise Charge-Coupled Devices,” IEEE Trans. Circuits and Systems, Vol.37, pp.1559-1565, Dec. 1990.
[26] J.S. Ho, M.C. Chiang, H.M. Cheng, T.P. Lin, and M.J. Kao, “A New Design for A 1280x1024 Digital CMOS Image Sensor with Enhanced Sensitivity, Dynamic Range and FPN,” VLSI Technology, Systems, and Applications, Int. Symposium on, pp.235-238, 1999.
[27] Y-Değerli, F. Lavernhe, P. Magnan, and J. Farré, “Non-Stationary Noise Responses of Some Fully Differential On-Chip Readout Circuits Suitable for Image Sensors,” IEEE Trans. Circuits and Systems, Vol.46, No.12, pp.1461-1474, Dec. 1999.
[28] R. Dennard, “Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions,” IEEE Journal of Solid-State Circuits, Vol.SC-9, pp.256- , 1974.
[29] Y. Taur, Y.-J. Mii, D-J. Frank, H.-S. Wong, D. Buchanan, S. Wind, S. Rishton, G. Sai-Halasz, and E. Nowak, “CMOS Scaling into the 21st Century : 0.1μm and Beyond,” IBM J. R&D, Vol.39, pp.245- , 1995.
[30] “The National Technology Roadmap for Semiconductors,” Semiconductor Industry Association (SIA), San Jose, CA, 1994.
[31] I.L. Fujimori, C.C. Wang, and C.G. Sodini, “A 256x256 CMOS Differential Passive Pixel Imager with FPN Reduction Techniques,” IEEE Journal of Solid-State Circuits, Vol.35, pp.2031-2036, Dec. 2000.
[32] Guidash, R.M., et al, “A 0.6μm CMOS Pinned Photodiode Color Imager Technology,” Electron Devices Meeting, Technical Digest, Int., 1997.
[33] M. Böhm, T. Lulé, H. Fischer, J. Schulte, B. Schneider, S. Benthien, F. Blecher, S. Coors, A. Eckhardt, H. Keller, P. Rieve, K. Seibel, M. Sommer, and J. Sterzel, “Design and Fabrication of a High Dynamic Range Image Sensor in TFA Technology,” Symposium on VLSI Circuit Digest of Technical Papers, pp.202-203, 1998.
[34] Richard Billings Merrill, “Active Pixel Sensor Cell That Reduces the Effect of 1/F Noise, Increase the Voltage Range of the Cell, and Reduces the Size of the Cell,” US Patent, No. 5854498, Dec. 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊