跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅棋
論文名稱:0.18微米製程5-GHz金氧半混波器設計與分析
論文名稱(外文):The Design and Analysis of 0.18um 5-GHz CMOS Mixer
指導教授:龔正龔正引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:77
中文關鍵詞:混波器
外文關鍵詞:Mixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近年來,無線通訊的應用快速發展,也帶動了相關的研究與設計。其主要的工作頻率包含900MHz、1800MHz的GSM系統及DECT系統;2400MHz之藍芽(Blue tooth)無線區域網路(Wireless LAN,WLAN)等等。在1999年IEEE 802.11a訂立了新的無線網路通訊的標準[1],工作頻率為5.1∼5.8GHz。
本篇論文主要是利用0.18微米金氧半製程技術設計5.2GHz混頻器,主要的內容分為三部份:(1)使用動態臨界電壓元件(Dynamic Threshold Voltage MOSFET, DTMOS)來設計電壓切換式被動混頻器;(2)針對Gilbert cell混頻器,提出改善轉換增益及線性度的方法;(3)提出單級主動式混頻器設計。
首先,我們提出利用DTMOS來設計電壓切換式混頻器,由於DTMOS在導通時具有較低的臨界電壓及較大的電流驅動能力,因此應用於電壓切換式混頻器,在本地振盪信號驅動DTMOS導通時,電晶體具有較低的臨界電壓,可降低本地振盪信號之功率,以達成較完美的切換。在本地振盪信號功率為0 dBm條件下,比較兩種電晶體混頻器,在轉換損耗皆為-3.4 dB,而DTMOS混頻器可得到較好的IIP3為9.47 dBm。
第二部份,由於轉換增益與線性度互為交換考量,因此在設計主動式混頻器時,需同時考慮此二規格。針對Gilbert cell混頻器,我們提出電感源級衰退及電感中間級匹配兩種方法分別改進Gilbert cell在線性度及轉換增益的表現。
第三部份,由於供應電壓隨著製程進步而下降,因此在設計多級疊接架構的混頻器,會產生信號擺幅下降進而衰減其性能的表現。因此我們提出一單級主動式混頻器,所設計之主動混頻器,在轉換增益為5.97 dB、IIP3為4.04 dBm、雜訊指數為9 dB。

Abstract
In the thesis, we designed different kinds of mixers for 5.2GHz and simulated with 0.18μm CMOS technology. There are three parts in this research, including (1)voltage switching mixer design with Dynamic Threshold Voltage MOSFET, DTMOS; (2)improvement of conversion gain and linearity for Gilbert cell mixer; (3)single stage active mixer for low supply voltage.
First, we introduce DTMOS applied to voltage switching mixer. The forward body-to-source voltage of DTMOS could enhance the current gain and lower threshold voltage when it turns on. Hence lower LO power can achieve good switching. We allocated the IF frequency to 1.2GHz and set LO power to 0 dBm. Traditional NMOS and DTNMOS of switching mixers have been compared. Both have conversion loss of -3.4 dB but DTMOS switching mixer has better IIP3 (9.47 dBm) then the traditional one.
Second, conversion gain and linearity of Gilbert cell mixer are trade-off for each other so the design should come to a compromise. The linearity of Gilbert cell mixer is improved with inductive degeneration and the conversion gain is increased by using inter-stage matching design.
For 1.8 V supply voltage, it’s difficult to design stack structure circuit. Headroom of voltage is compressed and signal swing is limited. It will degrade the performance of mixer, so a single stage active mixer was proposed. The major specifications simulated includes, conversion gain 5.97 dB, IIP3 4.04 dBm and noise figure 9.0 dB.

目錄
第一章 序論
1.1 研究動機
1.2 論文簡介
第二章 接收器架構與設計考量
2.1 簡介
2.2 接收器架構
2.2.1 超外差接收器
2.2.2 直接降頻接收器
2.2.3 鏡像消除接收器
2.3 設計參數及考量
2.3.1 轉換增益
2.3.2 雜訊及靈敏度
2.3.3 線性度和動態範圍
2.3.4 埠隔離度
2.3.5 其他考量
第三章 CMOS混頻器原理與分析
3.1 簡介
3.2 混頻器架構
3.2.1 電壓切換式混頻器
3.2.1.1 轉換增益分析
3.2.2 Gilbert cell 混頻器
3.2.2.1 轉換增益分析
3.2.3 其他類型混頻器
3.2.3.1 線性區操作混頻器
3.2.3.2 半取樣式混頻器
3.3 CMOS混頻器相關回顧
第四章 CMOS混頻器設計
4.1 簡介
4.2 電壓切換式被動混頻器設計與模擬
4.2.1 動態臨界電壓電晶體
4.2.2 應用DTMOS之電壓切換式混頻器
4.3 主動式混頻器設計與模擬
4.3.1 Gilbert cell混頻器設計改良與模擬
4.3.2 主動式混頻器設計
第五章 結論與未來展望
5.1 結論
5.2 未來的展望

參考文獻
[1]”Part11:Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications”, IEEE Std 802.11a, 1999.
[2]Lawrence E. Larson, “Integrated Circuit Technology Options for RFIC’s-Present Status and Future Directions”, IEEE Journal of Solid-State Circuits, vol.33, no.3, pp.387-399, March 1998 .
[3]TOSHIBA, RF 1chip IC for 46/49MHz Cordless Telephone, technical data.
[4]A. A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications”, IEEE Journal of Solid-State Circuits, vol.30, pp.1399-1410, Dec 1995.
[5]B. Razavi, “Design Considerations for Direct-Conversion Receivers”, IEEE Transactions on Circuits and Systems, vol.44, pp.428-435, June 1997.
[6]R. Hartley, “Modulation System”, U.S. Patent1, 1,666,206, April 1928.
[7]D. K. Weaver, “A Third Method of Generation and Detection of Single-Sideband Signals”, Proc. IRE, vol.44, pp.1703-1705, Dec 1956.
[8]Benhzad Razavi, “RF Microelectronics”, Howard W. Sams & co. Inc., 1982
[9]Derek K. Shaeffer, Thomas H. Lee, “The Design and Implementation of Low-Power CMOS Radio Receivers”, ISBN 0-7923-8518-7,1999.
[10]Barrie Gilbert, “A precise Four-Quadrant Multiplier with Subnanosecond Response”, IEEE Journal of Solid —State Circuits, pp.365-373, Dec 1968.
[11]J. Crols, and M. S. J. Steyaert, “A 1.5 GHz Highly Linear CMOS Downconversion Mixer”, IEEE Journal of Solid-State Circuits, vol.30, no.7 pp.736-742, July 1995.
[12]P. Y.Chan, A. Rofougaran, K. A. Ahmed, and A. A. Abidi, “A highly linear 1 GHz CMOS downcoversion mixer”, in European Solid-State Circuit Conference, pp.210-213,1993.
[13]J. Pihl, K. T. Christensen, E. Bruun,”Direct Donwncoversion with Switching CMOS Mixer”, IEEE p.117-119,2002.
[14]C. C. Tang, W. S. Lu, L. D. Van, W. S. Feng,”A 2.4GHz CMOS Down-Conversion Doubly Balance Mixer with Low Supply Voltage”, IEEE pp.794-797, 2001.
[15]Eyad Abou-Allarn, John J. Nisbet,”Low-Votage 1.9-GHz Front-end Receiver in 0.5um CMOS technology”, IEEE Journal of Solid-State Circuit, Vol.36, no.10, pp.1434-1440, 2001.
[16]S. G. Lee, J. K. Choi, “Current Reuse Bleeding Mixer”, IEEE Electron Letters, Vol.36, No.8, pp.696-697, April 2000.
[17]T. K. K. Kan, K. C. Mak, D. Ma H. C. Luong, “A 2-V 900-MHz CMOS Mixer for GSM Receivers”, ISCAS pp.328-330, May 2000.
[18]P. J. Sulivan, B. A. Xavier, Ku, W. H. Ku,”Low voltage performance of a micro wave CMOS Gilbert cell mixer”, IEEE Journal of Solid-State Circuits, Vol.32, pp.1151-1155, July 1997.
[19]P. Litmanen, P. Ikalainen, K. Halonen, “A 2.0-GHz submicron CMOS LNA and a Downconversion Mixer”, ISCAS vol.4, pp.357-359 1998.
[20]H.Kilicaslan, H.S. Kim, M. Ismail, ”A 1.9 GHz CMOS RF Down-conversion Mixer”, ISCAS vol.2, pp.1172-1174, 1998.
[21]F. Javier De la Hidalga-W, M. Jamal Deen, “The Dynamic Threshold Voltage MOSFET”, IEEE, 2000.
[22]Fariborz Assaderaghi, “DTMOS:Its Derivatives and Variations, and Their Potential Applications”, International Conference on Microelectronics, pp.9-10, Nov 2000.
[23]C. Y. Chang, J. G. Su, H. M. Hsu, S. C. Wong, T.Y. Huang, Y. C. Sun, “Investigations of Bulk Dynamic Threshold-Voltage MOSFET with 65GHz “Normal Mode” Ft and 220GHz “Over-Drive Mode” Ft for RF Applications”, Symposium on VLSI Technology Digest of Technical Papers, pp89-90, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top