跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/15 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐浩瀚
研究生(外文):Hao-Han Hsu
論文名稱:利用矽在絕緣層上的晶圓及感應式活性離子蝕刻製作多層高深寬比單晶矽梳型致動器
論文名稱(外文):Multi-level High-aspect Ratio Single Crystal Combdrive Actuator Using SOI Wafer and ICPRIE
指導教授:黃瑞星黃瑞星引用關係
指導教授(外文):Ruey-Shing Star Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:48
中文關鍵詞:梳狀致動器高深寬比感應式活性離子蝕刻多揭式
外文關鍵詞:combdrivehigh aspect ratioICPRIEmulti-level
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微機電系統科技(MEMS),製造微小的致動器和感測器的技術,近年來發展越來越快速。基本上微機電系統可以分成面型微機電(surface micromachine)和體型微機電(bulk micromachine)兩種。面型微機電是利用薄膜成長方式在矽基材上面成長複晶矽(polysilicon)或是介電層(dielectric layer),來製作微元件,他的高度大約在幾個微米附近。相對於面型微機電,體型微機電是利用蝕刻的方法把不要的矽從矽基材上面移除,留下設計好的微結構,他的厚度可達數十個微米。在現代的微機電系統科技中,梳狀致動器是一個很成常見的建構單元,可以用來做致動器、可變電容、質量感測器(inertial sensor)和諧振器(resonator)等等。當作致動器的時候,梳狀致動器可以用來推動微鏡片、微光柵(micro grating)、微反射鏡(micro mirror)、還有硬碟的讀取頭。梳狀致動器的電容和梳指的咬合的長度(engagement length)成正比,所以梳狀致動器可以很容易作成可變電容和質量感測器。高深寬比的梳狀致動器更因為有較厚的結構可以得到比面型微機電製作的梳狀致動器更大的電容還有驅動力量。
矽在絕緣層上的晶圓(SOI)可以利用矽融溶接合(silicon fusion bonding)再加上薄化的方式製造。利用矽融溶接合的方式,可以將兩片矽晶圓接合,並且得到很強的接合力量、不會產生泡泡(bubble),而且可以滿足微機電系統的需求。矽融溶接合基本上可以分為三個步驟:表面處理、室溫接合、高溫退火。有埋藏空腔的矽融溶接合(silicon fusion bonding with buried cavities)也試作成功。在本篇論文中,達成了沒有空洞的矽融溶接合(void-free silicon fusion bonding),而且製作的矽在絕緣層上的晶圓也被用來製作高深寬比的梳狀致動器。矽在絕緣層上的晶圓提供埋藏氧化層(buried oxide layer),他可以作為犧牲層(sacrificial layer)來釋放矽基材上面的微結構。除了釋放的機制,另一個製造高深寬比梳狀致動器的關鍵製程是感應式活性離子蝕刻(inductively coupled plasma reactive ion etching),他可以用來移除不想要的矽以形成梳狀致動器。除了檢出感應式活性離子蝕刻的製程參數,也研究了蝕刻矽在絕緣層上的晶圓的特殊現象─凹口(notching)。利用感應式活性離子蝕刻和矽在絕緣層上的晶圓,成功的製造了高深寬比的梳狀致動器。
利用多階製程(multi-level process),薄化懸臂(thinned suspension beam)的梳狀致動器也成功的試作出來。多階製程除了裡用矽在絕緣層上的晶圓的微機電技術之外,還使用了雙層硬光罩(dual hardmask)的方法。多階的高深寬比梳狀致動器有22微米的梳指厚度,還分別有12和17微米的懸臂厚度。多階製程提供高深寬比梳狀致動器薄化的懸臂,使致動器有較低的懸臂強度和較低的驅動電壓,而電容和位移仍舊不變。
在本論文中,製作多階高深寬比的科技平台研發完成,可以提供穩定的梳狀致動器製造,並可以用於製造各種微致動與感測器,例如質量感測器和微機電光學系統等等。
Micro electrical mechanical system (MEMS), a technology to fabricate miniaturized sensors and actuators, has been growing at an exciting pace in recent years. Basically, MEMS can be divided into to two sorts. Surface micromachining is an additive process to grow several layers such as polysilicon and dielectrics on the surface of the wafer, ranging up to several microns. In contrast, bulk micromachining is a subtractive process etching into silicon wafers to form the desired structures, which ranges up to tens of microns. In modern MEMS technology, combdrive is a very common building block, which can be used as actuators, variable capacitors, inertial sensors, resonators, etc. As an actuator, combdrive can drive micro lens, gratings, mirrors, and hard disk head locators. The capacitance of combdrive is proportional to engagement length of comb fingers, which enable combdrive to be configured as variable capacitors and inertial sensors. High aspect ratio combdrive using bulk micromachining benefits from thicker structure which results in high capacitance and driving force than its surface micromachining counterpart.
Silicon on insulator (SOI) wafers are fabricated using silicon fusion bonding and a following thinning process. Silicon fusion bonding can bond two silicon wafers together, providing strong bond energy, no bubble formation, and fulfilling requirements for MEMS applications. Silicon fusion bonding can basically be divided into three steps: surface treatment, room temperature contact, and high temperature. Fusion bonding with buried cavities is also demonstrated. In this thesis, void-free bonding is achieved and fabricated SOI wafers are used in fabrication of high aspect ratio combdrive. SOI wafers provide buried oxide layer, which can act as sacrificial layers under thick microstructure to release them from substrate. Besides release scheme, another key process to fabricate high aspect ratio combdrive is inductively coupled plasma reactive ion etching (ICPRIE), which removes undesired silicon to form combdrive. Process parameters of ICPRIE are retrieved and “notching”, a special phenomenon in SOI etching, is also investigated. High aspect ratio combdrive is successfully fabricated using SOI wafer and ICPRIE.
Combdrive with thinned suspension beam is also demonstrated using multi-level process, which is involved with SOI micromachining, and in addition, dual hardmask. The multi-level high aspect-ratio combdrive has finger thickness about 22μm and suspension beam thickness around 12μm and 17μm, respectively. The multi-level process provides thinned suspension beam for high aspect ratio combdrive, which benefits from reduce beam stiffness and thus reduced driving voltage, while capacitance and displacement of the combdrive retains.
A technology platform to fabricate high aspect-ratio multi-level combdrive is well set up in this work, which enables stable combdrive fabrication and will be used for many applications in implementing sensors and actuators, such as inertial sensors and micromachined optics.

Chapter I Introduction 1
Chapter II Fabrication of SOI wafer for MEMS applications 4
Introduction 4
Principle of Silicon Fusion Bonding 7
Hydrophilic Silicon Fusion Bonding Procedure 9
Observation of Wafer Bonding Status 11
Chapter III Design of High Aspect Ratio Combdrive 17
Introduction 17
Working Principle 19
Chapter IV Fabrication of High Aspect Ratio Combdrive 27
Introduction 27
Process Flow 27
Inductively Coupled Plasma Reactive Ion Etching 37
Measurement 43
Chapter V Conclusion 47
Chapter VI Reference 48

[1] Laterally Driven Polysilicon Resonator Microstructure, William C. Tang, Tu-Cuong H. Nguyen, Roger T. Howe, IEEE, 1989
[2] Semiconductor Wafer Bonding: Science and Technology, Q. -Y. Tong and U. Gosele, John Wiley and Sons, 1999
[3] Comparison of Bosch and cryogenic processes for patterning high aspect ratio features in silicon, Martin J. Walker, Oxford Instruments Plasma Technology
[4] SOI micromachining, Han-Han Hsu, Wen-Sheh Huang, Ruey-Shing Huang, Proceedings, 5th Nano Engineering and Micro System Technology Workshop, 2001
[5] Torsional Micromirrors with Lateral Actuators, Veljko Milanovic, Matthew Last , Kristofer S. J. Pister, Transducers 01, Muenchen, Germany, Jun. 2001
[6]Fabrication of SOI wafer with buried cavities using silicon fusion bonding and electrochemical etchback, J.Mark Noworolski, et al, Sensor and Actuator A(54) 1996 709-713
[7]Electrophysics of Micromechanical Comb Acturators, William A. Johnson et al., Journal of Microelectromechanical systems, vol 4, No 1, March 1995
[8]SCREAM I: A single mask, single-crystal silicon process for microelectromechanical structures, Kevin A. Shaw, Z. Lisa Zhang, Noel C. MacDonald, IEEE, 1993
[9]Polysilicon Hollow Beam Lateral Resonators, Michael W. Judy, Roger T. Howe, IEEE, 1993
[10]Electrostatic Model for an Asymmetric Combdrive, J.-L Andrew Yeh. Chun-Yuan Hui, Norman C. Tien, Journal of Microelectromechanical system, vol 9, No 1, March 2000
[11]Electrostatic Comb Drive Levitation and Control Method, William C. Tang, et al., Journal of microelectromechanical system, vol 1, NO 4, December 1992

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top