跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳敏偉
研究生(外文):Min-Wei Wu
論文名稱:快速熱退火對碳摻雜磷化銦鎵/磷化銦異質接面雙極性電晶體之影響
論文名稱(外文):The Effect of Rapid Thermal Annealing on Carbon-Doped InGaAs/InP Heterojunction Bipolar Transistors
指導教授:吳孟奇何充隆
指導教授(外文):Meng-Chyi WuChong-Long Ho
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:碳摻雜快速熱退火
外文關鍵詞:Carbon-DopedRapid Thermal Annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
摘要
隨著科技的進步,III-V族半導體之微波元件應用在無線通訊上日漸重要;而異質接面雙極性電晶體(Heterojunction Bipolar Transistor,以下簡稱HBT)擁有高功率、線性度佳、用電量低等優點,所以HBT漸被廣泛地使用於通訊用途上。
HBT的起源,是由William Shockley在1948年提出(專利編號為U.S. patent 2569347),詳細的理論推導及整體架構則是由H. Kroemer提出與建立;但直到70年代,HBT才真正實現於元件上;最早是利用液向磊晶(liquid-phase epitaxy,LPE)技術成長III-V族異質接面雙極性電晶體,隨著70年代中,分子束磊晶(Molecular Beam Epitaxy,MBE)及有機金屬化學氣相沉積(Metal-Organic Chemical Vapor Deposition,MOCVD)的技術成熟,使得HBT的磊晶品質上又邁進了一大步。
本論文主要對磷化銦鎵/磷化銦作兩方面的探討;第一部份是利用快速熱退火(Rapid Thermal Annealing,RTA)在700℃的環境,觀察基極層的濃度變化;原本預期基極濃度會增加一個數量級,但實際上僅增加原先的2~3倍左右,主要是由於氫的鈍化(hydrogen passivation),形成碳-氫鍵結合,使碳無法活化(activate)形成基極層的摻雜物(dopant);不過,在RTA後,由於基極濃度的增加,減少了空間電荷複合(space-charge recombination)的機制,電流增益也由原先~10增加至~20。
第二部分則是將射極與基極間的空間區域(spacer)移除,以觀察元件特性的變化;結果證實當空間區域移除後,大幅度地減少了此區域的複合電流,使電流增亦由原先~10增加至~100以上;而由此部分的實驗亦證明了碳低擴散率(diffusivity)的特性。

Abstract
We investigate the effect of rapid thermal annealing on Carbon-doped InGaAs/InP heterojunction bipolar transistors(HBT's).We predicted that, after 700℃ annealing, the p-type dopant can be increased by an order of magnitude, but the InGaAs base doping concentration shows that only about 2-3 fold dopant activation after RTA process. This could be attributed to hydrogen passivation during the growth. However, because of base dopant is activated, not additionally introduced, and less base current are spent on the space-charge recombination,higher gain can be anticipated for RTA device. Finally, we will also present the current gain which is over 100 by reducing the spacer thickness.

目錄
第一章 導論…………………………………………………………1
第二章 HBT基本原理與磊晶結構
2-1 HBT基本原理……………………………………………4
2-2 HBT磊晶結構……………………………………………9
第三章 元件製程
3-1 製程步驟………………………………………………11
3-2 光罩設計說明…………………………………………15
3-3 元件特性量測…………………………………………16
第四章 實驗數據分析……………………………………………17
第五章 結論與未來展望…………………………………………23
參考資料………………………………………………………………24

參考資料(Reference):
[1]H. Kroemer,“Theory of a wide-gap emitter for transistors,”
Proc. IRE, vol. 45, no. 11, pp. 1535-1537, Nov. 1957.
[2]H. Kroemer, “Heterostructure Bipolar Transistors and
Integrated Circuits,” Proc. IEEE, vol. 70, no. 1, pp. 13-
25, Jan. 1982.
[3]Jiann S. Yuan, “SiGe, GaAs, and InP Heterojunction Bipolar
Transistors,” Wiley, New York, 1999.
[4]W. Liu, S. Nelson, D. G. Hill, and A. Khatibzadeh, “Current
Gain Collapse in Microwave Multifinger Heterojunction
Bipolar Transistors Operated at Very High Power Densities,”
IEEE Trans. Electron Devices, vol. 40, no. 11, pp.1917-1927,
Nov. 1993.
[5]W. Liu, Hin-Fai Chau, and E. Beam III, ”Thermal Properties
and Thermal Instabilities of InP-Based Heterojunction
Bipolar Transistors,” IEEE Trans. Electron Devices, vol.
43, no. 3, pp.388-395, Mar. 1996.
[6]K. Kurishima, T. Kobayashi, and U. Gösele, ”Abnormal
Redistribution of Zn in InP/InGaAs Heterojunction Bipolar
Transistor Structures,” Appl. Phys. Lett., vol. 60, no. 18,
pp.2496-2498, May 1992.
[7]S. A. Stockman, A. W. Hanson, and G. E. Stillman, ”Growth
of Carbon-Doped p-type InXGa1-XAs(0<X≦0.53)by
Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett.,
vol. 60, no. 8, pp.2903-2905, June 1992.
[8]S. R. Bahl, N. Moll, V. M. Robbins, H-C Kuo, B. G. Moser,
and G. E. Stillman, “Be Diffusion in InGaAs/InP
Heterojunction Bipolar Transistors,” IEEE Electron Device
Lett., vol. 21, no. 7, pp.332-334, July 2000.
[9]K. Hong and D. Pavlidis, ”Heavily Carbon Doped InGaAs
Lattice Matched to InP Grown by LP-MOCVD Using TMIn, TMGa
and Liquid CCl4,” Indium Phosphide and Rleated Materials.
Conference Proceedings., Seventh International Conference
on, pp.144-147, 1995.
[10]R. Bhat, J. R. Hayes, E. Colas, and R. Esagui, “Atomic
Layer Epitaxy Grown Heterojunction Bipolar Transistor
Having a Carbon-Doped Base,” IEEE Electron Device Lett.,
vol. 9, no. 9, pp.442-443, Sept. 1988.
[11]A.W. Hanson, S. A. Stockman, and G. E. Stillman,
“InP/In0.53Ga0.47As Heterojunction Bipolar Transistors with
a Carbon-Doped Base Grown by MOCVD,” IEEE Electron Device
Lett., vol. 13, no. 10, pp.504-506, Oct. 1992.
[12]Brian W-P Hong, Jong-In Song, C. J. Palmstrøm, Bart Van
der Gaag, Kyung-Bae Chough, and John R. Hayes, “DC, RF,
and Noise Characteristics of Carbon-Doped Base InP/InGaAs
Heterojunction Bipolar Transistors,” IEEE Trans. Electron
Devices, vol. 41, no. 1, pp.19-25, Jan. 1994.
[13]J. Kruse, P. J. Mares, D. Scherrer, M. Feng, and G. E.
Stillman, “Temperature Dependent Study of Carbon-Doped
InP/InGaAs HBT’s,”IEEE Electron Device Lett., vol. 17,
no. 1, pp.10-12, Jan. 1996.
[14]K. Kurishima, S. Yamahata, H. Nakajima, H. Ito, and N.
Watanabe, “Initial Degradation of Base-Emitter Junction in
Carbon-Doped InP/InGaAs HBT’s Under Bias and Temperature
Stress,” IEEE Electron Device Lett., vol. 19, no. 8,
pp.303-305, Aug. 1998.
[15]W. Liu, “Fundamentals of III-V Devices,” Wiley, New York,
1999.
[16]B. Willén, U. Westergren, and H. Asonen, “High-Gain, High-
Speed InP/InGaAs Double-Heterojunction Bipolar Transistors
with a Step-Graded Base-Collector Heterojunction,” IEEE
Electron Device Lett., vol. 16, no. 11, pp.479-481, Nov.
1995.
[17]S. Yamahata, K. Kurishima, H. Ito, and Y. Matsuoka, “Over-
220-GHz-fT-and-fmax InP/InGaAs Double-Heterojunction
Bipolar Transistors with a New Hexagonal-Shaped Emitter,”
Proc. GaAs IC Symp., pp.163-166, 1995.
[18]D. Huber, R. Bauknecht, C. Bergamaschi, M. Bitter, A.
Huber, T. Morf, A. Neiger, M. Rohner, I. Schnyder, V.
Schwarz, and H. Jäckel, ”InP-InGaAs Single HBT Technology
for Photoreceiver OEIC’s at 40Gb/s and Beyond,” J.
Lighwave Technol., vol. 18, no. 7, pp. 992-1000, July 2000.
[19]R. C. Gee, T. P. Chin, C. W. Tu, P. M. Asbeck, C. L. Lin,
P. D. Kirchner, and J. M. Woodall, “InP/InGaAs
Heterojunction Bipolar Transistors Grown by Gas-Source
Molecular Beam Epitaxy with Carbon-Doped Base,” IEEE
Electron Device Lett., vol. 13, no. 5, pp.247-249, May
1992.
[20]T. P. Chin, P. D. Kirchner, J. M. Woodall, and C. W. Tu,
”Highly Carbon-Doped p-type Ga0.5In0.5As and Ga0.5In0.5P
by Carbon Tetrachloride in Gas-Source Molecular Beam
Epitaxy,” Appl. Phys. Lett., vol. 59, no. 25, pp.2865-
2867, Nov. 1991.
[21]T. Won, S. Iyer, S. Agarwala, and H. Morkoc, ”Collector
Offset Voltage of Heterojunction Bipolar Transistors Grown
by Molecular Beam Epitaxy,” IEEE Electron Device Lett.,
vol. 10, no. 6, pp.274-276, June. 1989.
[22]M. Le Pallec, R. Bauknecht, M. Bitter, and H. Melchior, ”A
New Concept for InP-HBT Fabrication Process,” Indium
Phosphide and Rleated Materials. Conference Proceedings.,
Eleventh International Conference on, pp.471-474, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文