跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃意文
研究生(外文):Yei-Wen Huang
論文名稱:無電極電鍍應用於填充孔洞
論文名稱(外文):Electroless deposition for via filling
指導教授:葉鳳生
指導教授(外文):Fon-Shan Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:置換銅種子層附著力化學機械研磨阻障層深寬比孔洞無電極電鍍
外文關鍵詞:displacementCu seed layeradhesionCMPbarrieraspect ratioviaelectroless deposition
相關次數:
  • 被引用被引用:2
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
本篇論文在於對非晶矽/鉭/氧化矽/矽結構,發展出以電化學方式對非晶矽進行無電極電鍍置換沉積銅種子層。我們藉由改變非晶矽厚度由200A∼400 A;及改變置換液HF濃度由6%∼8%來找出置換銅種子最佳情況。首先透過掃瞄式電子顯微鏡、α-step、四點探針、歐傑電子質譜儀及二次離子質譜儀分析來瞭解置換銅種子層置換沈積率、電阻率及縱深成份元素分析;另外也藉由低略角X光粉末繞射分析(GIA XRD)來瞭解銅膜晶向並探討置換時銅膜剝落附著力變差的原因是由於TaOx的產生。而在經過通N2氣中RTA快速升溫退火溫度400℃、時間400sec之後,銅種子層電阻率可達28.6μΩ-cm。之後再配合於有電極電鍍,藉由量測儀器上的分析觀察來瞭解其電鍍銅膜晶向、熱穩定性以及定性上的附著力測試;在非晶矽厚度增加到400A時保護底下Ta減少氧化除對銅膜附著力有增強的效果,加上經過溫度400℃、時間400sec 的RTA 更增強了Cu/Ta之間附著力,其附著力最高可達到186.84 Kg/cm2,有助於日後配合後段製程化學機械研磨機(CMP)上之整合。最後再由SEM觀察其填充高深寬比孔洞之能力:當電漿輔助化學氣相沉積非晶矽厚度到300A以上時,置換銅種子層已漸漸能夠填充高深寬比孔洞,對置換非晶矽厚度300A時;其銅種子層可填充進0.11μm最小孔徑,深寬比為1.8;而非晶矽厚度400A;其置換銅種子層也可達到填充孔徑0.11μm,深寬比為2的孔洞。
Abstract
We developed the electrochemical displacement method of Cu seed-layer formed by replacing the amorphous-Si on Ta/SiO2/Si structure. The thickness of amorphous-Si varing from 200 Å ~ 400Å and HF concentration changing from 6% ~ 8% were performed in order to find the best condition for Cu seed layer deposition. The deposition rate, resistivity and depth profile of atomic composition for the displaced Cu seed layer were studied from measurement of SEM,α-step, Four Probe Point, Auger and SIMS. In addition, it was owing to TaOx resulting in poor adhesion when we discuss Cu films peeling by GIA XRD. After the rapid thermal annealing at temperature 400℃ for 400sec in N2 ambient , the resistivity of Cu seed layer is 28.6μΩ-cm. After electroplating Cu films, the grains texture, thermal stability and adhesion were detected by XRD, SIMS and 3-M scotch type test or adhesion testing. Subsequently, the thick a-Si layer protects Ta from oxidation, it does increase Cu/Ta adhesion, and RTA at temperature 400℃ for 400sec in N2 ambient will also improve ability of adhesion. Finally, the ability of filling vias with high aspect ratio was investigated. the seed layers can fill 0.11μm with aspect ratio 1.8 for a-Si 300Å and aspect ratio 2 for a-Si 400 Å.
目錄
第一章 緒論…………………………………………………………….1
第二章 有電極電鍍銅沈積原理…………………………………....3
2-1 電解反應……………………………………………….3
2-2 金屬的電極電位……………………………………….3
2-3 鍍膜結構……………………………………………….5
2-4 有電極電鍍銅鍍液組成 ……………………………....6
第三章 矽上置換銅種子層沈積原理……………………………....7
3-1 矽上置換銅種子層基本機制………………………….7
3-2 矽上置換銅種子層溶液組成………………………….7
第四章 量測原理……………………………………………………9
4-1 四點探針……………………………………………….9
4-2 X光粉末繞射分析…………………………………….10
4-3 掃描式電子顯微鏡分析 ……………………………....12
4-4 二次離子質譜儀分析………………………………….14
4-5 歐傑電子能譜分析………………………………….16
4-6 電容-電壓曲線量測 …………………………………...17
4-7 薄膜附著力測試……………………………………….19
4-8 原子力探針顯微鏡…………………………………….19
第五章 實驗………………………………………………………....20
5-1 樣品製作……………………………………………….20
GroupA 非晶矽/鉭結構上置換銅種子層…..………..20
GroupB 置換銅種子層配合有電極電鍍銅………….24
GroupC 應用於有電極電鍍填充孔洞…….………….25
5-2 物性量測……………………………………………….27
5-2.1 片電阻………………………………………27
5-2.2 X光粉末繞射儀……………………………27
5-2.3 掃描式電子顯微鏡…………………………27
5-2.4 歐傑質譜儀 ………………………………27
5-2.5 二次離子質譜儀……………………………27
5-2.6 高頻電容-電壓曲線量測…………………...28
5-2.7 薄膜附著力測試…………………………….28
5-2.8 原子力探針顯示器……………………………28
5-3各製程詳細步驟………………………………………….29
第六章 結果與討論 ………………………………………………….32
6-1 置換銅種子層薄膜分析……………………………………..32
6-1.1 沈積率 ……………………………………………..32
6-1.2 銅種子薄膜厚度量測 ………………………………..33
6-1.3 電阻率………………………………………………..33
6-1.4 置換銅種子層表面grains生長情況………………..37
6-1.5 AFM薄膜表面roughness分析……………………...37
6-1.6 歐傑電子質譜儀分析………………………………..37
6-1.7 小角度X光粉末繞射儀分析………………………..38
6-2 配合有電極電鍍銅製程整合………………………………49
6-2.1 電阻率……………………………………………….49
6-2.2 XRD粉末繞射儀分析………………………………49
6-2.3 薄膜附著力測試…………………………………….49
6-2.4 縱深分佈量測………………………………………49
6-2.5 C-V量熱穩定性……………………………………50
6-3 應用於填充孔洞瞭解其填充能力………………………...54
6-3.1 置換銅種子層應用於填充孔洞……………………54
6-3.2 配合應用於有電極電鍍……………………………55
第七章 結論………………………………………………………….62
參考文獻……………………………………………………………...64
Reference:
[1] X.W. Lin, “Future interconnect technologies and copper metallization”, Solid State Technology, Oct. 1998, p.63
[2] S. Peter, “Tantalum, Copper and Damascene: The Future of Interconnects”, Semiconductor International, Jun. 1998, p.91
[3] N. Hosoi, R. Kimizuka, M. Nagai, S. Okuyama, T. Kobayashi, N. Ito, K. Arita, and
H. Miyamoto,“Two-step Copper Electroplating Technique Using Seed Enhancement Step with Alkali-Metal-Free copper Pyrophosphate Bath”, Interconnect Technology Conference, 2001. Proceedings of the IEEE 2001 International ,0 2001
Page(s): 277 -279
[4] K.Chul. Park, S.M. Choi, S.J. Lee, K.H. Chang, H.D. Lee, H.K. Kang,and S.I. Lee, “Process integration of CVD Cu as a seed layer for Cu electroplating and a plug-fill application”,
Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International , 2000 Page(s): 43 -45
[5] S. Gandikota, C. McGuirk, D. Parikh, J. Chen, A. Malik and G. Dixit,“Characterization of Electroless Copper as a Seed layer for Sub-0.1μm Interconnects”, Interconnect Technology Conference, 2001. Proceedings of the IEEE 2001 International , 2001
Page(s): 30 -32
[6] 潘仁泉 ” Electroless Copper Deposition on Ta、TaN、TiN Based for ULSI ”, 國立清華大學電子工程研究所碩士論文, 1999
[7] U. Cohen, G. Tzanavaras,“ Jet ECD plating and seed layers for sub-0.10μm interconnects”, Solid State Technology, May 2001
[8] M. K. Lee, J.J. Wang,and H. D. Wang, “Deposition of Copper Films on Silicon from Cupric Sulfate and Hydrofluoric Acid”, Journal of Electrochemical Society, May. 1997
[9] 冉景涵, “Integration of Cu Seed Layer and Electroplating Deposition for ULSI”, 國立清華大學電子工程研究所碩士論文, 2000 , MRS Spring Meeting (2001) San Francisco, USA.
[10] 王宣凱 “ Novel Seed Layer for Cu Metallization”, 國立清華大學電子工程研究所碩士論文, 2001
[11] Allen C. Hamilton Jr., “Acid Sulfate and Pyrophosphate Copper Plating”, Plating and Surface Finishing, 1998, p.24
[12] T. Thomas, R. Thomas, “Electroplating bath control for copper interconnects”, Solid State Technology, Nov. 1998, p.47
[13] W.C.Gau, T.C.Chang, J.C. Hu, “Copper electroplating for future ultralarge scale integration interconnection”, Journal of Vacuum Society Technology A, vol. 18, No. 2, Mar/Apr. 2000
[14] L.A. Nagahara, “Effectfs of HF solution in the electroless deposition on silicon surfaces”, American Vacuum Society, Vol. 11, No. 4, Jul/Aug 1993, p. 763
[15] Sebastiao G. dos Santos Filho, “A mechanism for electroless Cu plating onto Si”, Microelectronic Engineering, Vol. 33, 1997, p.149
[16] M.K. Lee, H. D. Wang, “A Cu seed layer for Cu deposition on silicon”, Solid-State Electronics, Vol. 41, No. 5, 1997, p. 695
[17] DIETER K. SCHRODER, “Semiconductor Material and Device Characterization”
[18] 汪建民等, ”材料分析”
[19] 張俊彥等, “積體電路製程及設備技術手冊”
[20] H.C. Chen, M.S. Yang, “The Investigation of electroplating Deposited Copper Films for Advanced VLSI Interconnection”, IITC 99, IEEE, 1999, p. 65
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊